' PROGRAM: 2003 EDU RC Default Software ' Written by: Innovation First, Inc. ' Date: 2002 Nov 15 ' ' Define BS2-SX Project Files ' ' {$STAMP BS2SX} '============================================================================= '========== DECLARE VARIABLES ================================================ '============================================================================= ' Below is a list of declared input and output variables. Comment or un-comment ' the variables as needed. Declare any additional variables required in ' your main program loop. Note that you may only use 26 total variables. '---------- Operator Interface (OI) - Analog Inputs -------------------------- p1_x VAR byte 'Port 1, X-axis on Joystick p2_x VAR byte 'Port 2, X-axis on Joystick p3_x VAR byte 'Port 3, X-axis on Joystick p4_x VAR byte 'Port 4, X-axis on Joystick p1_y VAR byte 'Port 1, Y-axis on Joystick p2_y VAR byte 'Port 2, Y-axis on Joystick p3_y VAR byte 'Port 3, Y-axis on Joystick p4_y VAR byte 'Port 4, Y-axis on Joystick p1_wheel VAR byte 'Port 1, Wheel on Joystick p2_wheel VAR byte 'Port 2, Wheel on Joystick p3_wheel VAR byte 'Port 3, Wheel on Joystick p4_wheel VAR byte 'Port 4, Wheel on Joystick 'p1_aux VAR byte 'Port 1, Aux on Joystick 'p2_aux VAR byte 'Port 2, Aux on Joystick 'p3_aux VAR byte 'Port 3, Aux on Joystick 'p4_aux VAR byte 'Port 4, Aux on Joystick '---------- Operator Interface - Digital Inputs ------------------------------ oi_swA VAR byte 'OI Digital Switch Inputs 1 thru 8 oi_swB VAR byte 'OI Digital Switch Inputs 9 thru 16 '---------- Robot Controller (RC) - Analog Inputs ---------------------------- 'sensor1 VAR byte 'RC Analog Input 1, connector pin 2 'sensor2 VAR byte 'RC Analog Input 2, connector pin 16 'sensor3 VAR byte 'RC Analog Input 3, connector pin 5 'sensor4 VAR byte 'RC Analog Input 4, connector pin 19 'sensor5 VAR byte 'RC Analog Input 5, connector pin 8 'sensor6 VAR byte 'RC Analog Input 6, connector pin 22 'sensor7 VAR byte 'RC Analog Input 7, connector pin 11 'bat_volt VAR byte 'RC Analog Input 8, hardwired to the Battery 'Vin = ((4.7/14.7)* Battery voltage)-0.4 'Binary Battery Voltage = (Vin/5.0 V)*255 '---------- Robot Controller - Digital Inputs -------------------------------- rc_swA VAR byte 'RC Digital Inputs 1 thru 8 rc_swB VAR byte 'RC Digital Inputs 9 thru 16 '---------- Robot Controller - Digital Outputs ------------------------------- relayA VAR byte relayB VAR byte '---------- Misc. ------------------------------------------------------------ 'packet_num VAR byte 'delta_t VAR byte PB_mode VAR byte drive_R Var byte 'Output Drive Right drive_L Var byte 'Output Drive Left temp Var byte 'Used as a temperary variable. '============================================================================= '========== DEFINE ALIASES =================================================== '============================================================================= ' Aliases are variables which are sub-divisions of variables defined ' above. Aliases don't require any additional RAM. '---------- Aliases for each OI switch input --------------------------------- ' Below are aliases for the digital inputs located on the Operator Interface. ' Ports 1 & 3 have their inputs duplicated in ports 4 & 2 respectively. The ' inputs from ports 1 & 3 may be disabled via the 'Disable' dip switch ' located on the Operator Interface. See Users Manual for details. p1_sw_trig VAR oi_swA.bit0 'Joystick Trigger Button, same as Port4 pin5 p1_sw_top VAR oi_swA.bit1 'Joystick Top Button, same as Port4 pin8 p1_sw_aux1 VAR oi_swA.bit2 'Aux input, same as Port4 pin9 p1_sw_aux2 VAR oi_swA.bit3 'Aux input, same as Port4 pin15 p3_sw_trig VAR oi_swA.bit4 'Joystick Trigger Button, same as Port2 pin5 p3_sw_top VAR oi_swA.bit5 'Joystick Top Button, same as Port2 pin8 p3_sw_aux1 VAR oi_swA.bit6 'Aux input, same as Port2 pin9 p3_sw_aux2 VAR oi_swA.bit7 'Aux input, same as Port2 pin15 p2_sw_trig VAR oi_swB.bit0 'Joystick Trigger Button p2_sw_top VAR oi_swB.bit1 'Joystick Top Button p2_sw_aux1 VAR oi_swB.bit2 'Aux input p2_sw_aux2 VAR oi_swB.bit3 'Aux input p4_sw_trig VAR oi_swB.bit4 'Joystick Trigger Button p4_sw_top VAR oi_swB.bit5 'Joystick Top Button p4_sw_aux1 VAR oi_swB.bit6 'Aux input p4_sw_aux2 VAR oi_swB.bit7 'Aux input '---------- Aliases for each RC switch input --------------------------------- ' Below are aliases for the digital inputs located on the Robot Controller. rc_sw1 VAR rc_swA.bit0 rc_sw2 VAR rc_swA.bit1 rc_sw3 VAR rc_swA.bit2 rc_sw4 VAR rc_swA.bit3 rc_sw5 VAR rc_swA.bit4 rc_sw6 VAR rc_swA.bit5 rc_sw7 VAR rc_swA.bit6 rc_sw8 VAR rc_swA.bit7 rc_sw9 VAR rc_swB.bit0 rc_sw10 VAR rc_swB.bit1 rc_sw11 VAR rc_swB.bit2 rc_sw12 VAR rc_swB.bit3 rc_sw13 VAR rc_swB.bit4 rc_sw14 VAR rc_swB.bit5 rc_sw15 VAR rc_swB.bit6 rc_sw16 VAR rc_swB.bit7 '---------- Aliases for each RC Relay outputs --------------------------------- ' Below are aliases for the relay outputs located on the Robot Controller. relay1_fwd VAR RelayA.bit0 relay1_rev VAR RelayA.bit1 relay2_fwd VAR RelayA.bit2 relay2_rev VAR RelayA.bit3 relay3_fwd VAR RelayA.bit4 relay3_rev VAR RelayA.bit5 relay4_fwd VAR RelayA.bit6 relay4_rev VAR RelayA.bit7 relay5_fwd VAR RelayB.bit0 relay5_rev VAR RelayB.bit1 relay6_fwd VAR RelayB.bit2 relay6_rev VAR RelayB.bit3 relay7_fwd VAR RelayB.bit4 relay7_rev VAR RelayB.bit5 relay8_fwd VAR RelayB.bit6 relay8_rev VAR RelayB.bit7 '---------- Aliases for the Pbasic Mode Byte (PB_mode) ----------------------------------------------- ' Bit 7 of the PB_mode byte (aliased as comp_mode below) indicates the status ' of the Competition Control, either Enabled or Disabled. This indicates the ' starting and stopping of rounds at the competitions. ' Comp_mode is indicated by a solid "Disabled" LED on the Operator Interface. ' Comp_mode = 1 for Enabled, 0 for Disabled. ' ' Bit 6 of the PB_mode byte (aliased as auton_mode below) indicates the status ' of the Autonomous Mode, either Autonomous or Normal. This indicates when ' the robot must run on its own programming. When in Autonomous Mode, all ' OI analog inputs are set to 127 and all OI switch inputs are set to 0 (zero). ' Auton_mode is indicated by a blinking "Disabled" LED on the Operator Interface. ' Auton_mode = 1 for Autonomous, 0 for Normal. ' ' Autonomous Mode can be turned ON by setting the RC to Team 0 (zero). ' ' Bit 5 of the PB_mode byte (aliased as user_display_mode below) indicates when ' the user selects the "User Mode" on the OI. PB_mode.bit5 is set to 1 in "User Mode". ' When the user selects channel, team number, or voltage, PB_mode.bit5 is set to 0 ' When in "User Mode", the eight Robot Feedback LED are turned OFF. ' Note: "User Mode" is identified by the letter u in the left digit (for 4 digit OI's) ' Note: "User Mode" is identified by decimal places on the right two digits (for 3 digit OI's) comp_mode VAR PB_mode.bit7 auton_mode VAR PB_mode.bit6 user_display_mode VAR PB_mode.bit5 '============================================================================= '========= DEFINE CONSTANTS FOR INITIALIZATION =============================== '============================================================================= ' The initialization code is used to select the input data used by PBASIC. ' The Master micro-processor (uP) sends the data you select to the BS2SX ' PBASIC uP. You may select up to 26 constants, corresponding ' to 26 variables, from the 32 available to you. Make sure that you have ' variables for all the bytes recieved in the serin command. ' ' The constants below have a "c_" prefix, as compared to the variables that ' they will represent. ' ' Set the Constants below to 1 for each data byte you want to recieve. ' Set the Constants below to 0 for the unneeded data bytes. '---------- Set the Initialization constants you want to read ---------------- c_p1_y CON 1 c_p2_y CON 1 c_p3_y CON 1 c_p4_y CON 1 c_p1_x CON 1 c_p2_x CON 1 c_p3_x CON 1 c_p4_x CON 1 c_p1_wheel CON 1 c_p2_wheel CON 1 c_p3_wheel CON 1 c_p4_wheel CON 1 c_p1_aux CON 0 c_p2_aux CON 0 c_p3_aux CON 0 c_p4_aux CON 0 c_oi_swA CON 1 c_oi_swB CON 1 c_sensor1 CON 0 c_sensor2 CON 0 c_sensor3 CON 0 c_sensor4 CON 0 c_sensor5 CON 0 c_sensor6 CON 0 c_sensor7 CON 0 c_batt_volt CON 0 c_rc_swA CON 1 c_rc_swB CON 1 c_delta_t CON 0 c_PB_mode CON 0 c_packet_num CON 0 c_res01 CON 0 '---------- Initialization Constant VOLTAGE - USER DEFINED ------------------- ' This is the 'Low Battery' detect voltage. The 'Low Battery' LED will ' blink when the voltage drops below this value. ' Basically, the value = ((DESIRED FLASH VOLTAGE * 16.46) - 8.35) ' Example, for a 6.5 Volt Flash trigger, set value = 99. dataInitVolt CON 99 '============================================================================= '========== DEFINE CONSTANTS (DO NOT CHANGE) ================================= '============================================================================= ' Baud rate for communications with User CPU OUTBAUD CON 20 '(62500, 8N1, Noninverted) INBAUD CON 20 '(62500, 8N1, Noninverted) USERCPU CON 4 FPIN CON 1 COMA CON 1 COMB CON 2 COMC CON 3 '============================================================================= '========== MAIN PROGRAM ===================================================== '============================================================================= '---------- Input & Output Declarations -------------------------------------- Output COMB Input COMA Input COMC Output 7 'define Basic Run LED on RC => out7 Output 8 'define Robot Feedback LED => out8 => PWM1 Green Output 9 'define Robot Feedback LED => out9 => PWM1 Red Output 10 'define Robot Feedback LED => out10 => PWM2 Green Output 11 'define Robot Feedback LED => out11 => PWM2 Red Output 12 'define Robot Feedback LED => out12 => Relay1 Red Output 13 'define Robot Feedback LED => out13 => Relay1 Green Output 14 'define Robot Feedback LED => out14 => Relay2 Red Output 15 'define Robot Feedback LED => out15 => Relay2 Green '---------- Initialize Inputs & Outputs -------------------------------------- Out7 = 1 'Basic Run LED on RC Out8 = 0 'PWM1 LED - Green Out9 = 0 'PWM1 LED - Red Out10 = 0 'PWM2 LED - Green Out11 = 0 'PWM2 LED - Red Out12 = 0 'Relay1 LED - Red Out13 = 0 'Relay1 LED - Green Out14 = 0 'Relay2 LED - Red Out15 = 0 'Relay2 LED - Green '============================================================================= '========== PBASIC - MASTER uP INITIALIZATION ROUTINE ======================== '============================================================================= ' DO NOT CHANGE THIS! DO NOT MOVE THIS! ' The init routine sends 5 bytes to the Master uP, defining which data bytes to receive. ' 1) Collect init. ' 2) Lower the COMA line, which is the clk line for the shift out command. ' 3) Lower COMB line to tell pic that we are ready to send init data. ' 4) Wait for pic to lower the COMC line, signaling pic is ready for data. ' 5) Now send out init dat to pic, all 5 bytes. ' 6) Now set direction and levels for the COMA and COMB pins. tempA CON c_p3_x <<1 + c_p4_x <<1 + c_p1_x <<1 + c_p2_x <<1 + c_rc_swB dataInitA CON tempA <<1 + c_rc_swA <<1 + c_oi_swB <<1 + c_oi_swA tempB CON c_sensor4 <<1 + c_sensor3 <<1 + c_p1_y <<1 + c_p2_y <<1 + c_sensor2 dataInitB CON tempB <<1 + c_sensor1 <<1 + c_packet_num <<1 + c_PB_mode tempC CON c_batt_volt <<1 + c_sensor7 <<1 + c_p1_wheel <<1 + c_p2_wheel <<1 + c_sensor6 dataInitC CON tempC <<1 + c_sensor5 <<1 + c_p3_y <<1 + c_p4_y tempD CON c_res01 <<1 + c_delta_t <<1 + c_p3_aux <<1 + c_p4_aux <<1 + c_p1_aux dataInitD CON tempD <<1 + c_p2_aux <<1 + c_p3_wheel <<1 + c_p4_wheel Output COMA low COMA low COMB Wait_init: if IN3 = 1 then Wait_init: Shiftout COMB,COMA,1, [dataInitA,dataInitB,dataInitC,dataInitD,dataInitVolt] Input COMA high COMB '============================================================================= '========== MAIN LOOP ======================================================== '============================================================================= MainLoop: '---------- Serin Command - Get Data from Master uP -------------------------- ' Construct the "serin" command using the following rules: ' 1) There must be one variable for every input defined in the "Define Constants for Init" section. ' 2) The order must match the order in the EXAMPLE SERIN COMMAND below. ' 3) The total number of all variables may not exceed 26. ' 4) Only use one "Serin" command. ' 5) The Serin command must occupy one line. ' ' If you see a BASIC INIT ERR on the Robot Controller after programming and pressing RESET, then ' there is a problem with the Serin command below. Check the number of variables. A BASIC INIT ERR ' will not occur if you have the variables in the wrong order, however your code will not work correctly. ' ' EXAMPLE SERIN COMMAND ' This example exceed the 26 variable limit and is not on one line: ' ' Serin COMA\COMB, INBAUD, [oi_swA,oi_swB,rc_swA,rc_swB,p2_x,p1_x,p4_x,p3_x,PB_mode,packet_num,sensor1, ' sensor2,p2_y,p1_y,sensor3,sensor4,p4_y,p3_y,sensor5,sensor6,p2_wheel,p1_wheel, ' sensor7,sensor8,p4_wheel,p3_wheel,p2_aux,p1_aux,p4_aux,p3_aux,delta_t,res01] ' Serin COMA\COMB, INBAUD, [oi_swA,oi_swB,rc_swA,rc_swB,p2_x,p1_x,p4_x,p3_x,p2_y,p1_y,p4_y,p3_y,p2_wheel,p1_wheel,p4_wheel,p3_wheel] '---------- Blink BASIC RUN LED ---------------------------------------------- Toggle 7 'Basic Run LED on the RC is toggled ON/OFF every loop. '============================================================================= '========== PERFORM OPERATIONS =============================================== '============================================================================= '>>>>>>>>>>>>Map input axis to output PWMs<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ' This defines the right and left drive as p1_y and p3_y for default driving ' and p1_y and p1_x for One Joystick (mixed) driving. drive_R = p1_y 'Default right drive input drive_L = p3_y 'Default left drive input if rc_sw5 = 0 then dont_change_drive_L_to_p1_x drive_L = p1_x 'Optional drive input for 1-Joystick dont_change_drive_L_to_p1_x: '>>>>>>>>>>>>PWM Feedback lights<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ' This drives the "PWM1" and "PWM2" "Robot Feedback" lights on the Operator ' Interface. The lights are green for joystick forward and red for joystick ' reverse. Both red and green are on when the joystick is centered. Use the ' trim tabs on the joystick to adjust the center. if user_display_mode = 1 then skip_this_code if drive_R > 129 then drive_R_not_127 if drive_R < 125 then drive_R_not_127 Out8 = 1 Out9 = 1 goto exit_drive_R_test drive_R_not_127: Out8 = drive_R/216 'LED is ON when Port 1 Y is full forward Out9 = ~(drive_R/56 max 1) 'LED is ON when Port 1 Y is full reverse exit_drive_R_test if drive_L > 129 then drive_L_not_127 if drive_L < 125 then drive_L_not_127 Out10 = 1 Out11 = 1 goto exit_drive_L_test drive_L_not_127: Out10 = drive_L/216 'LED is ON when Port 3 Y is full forward Out11 = ~(drive_L/56 max 1) 'LED is ON when Port 3 Y is full reverse exit_drive_L_test: skip_this_code: '>>>>>>>>>>>>Speed Sensativity - Optional Code - Install Jumper on SW7<<<<<<< ' This optional code uses the Port 1 Wheel to set the maximum speed of the motors. ' This code only works when SW7 has a jumper installed. This code is located first ' to ensure speed reduction is applied before the other section modify drive_L and drive_R. if rc_sw7 = 0 then skipOption7 p1_wheel = (((p1_wheel*154)/254)+100) max 254 'adjust wheel to 154-254 if drive_R < 127 then drive_R_reverse: 'is the right drive forward drive_R = (drive_R - 127) min 0 'subract 127 to get the forward value drive_R = (drive_R * p1_wheel)/254 'multiply by the wheel percentage drive_R = (drive_R + 127) max 254 'add 127 back for proper output goto drive_R_done: 'exit the drive right section drive_R_reverse: 'the right drive is reverse drive_R = (127 - drive_R) min 0 'invert drive-R to get a forward value drive_R = (drive_R * p1_wheel)/254 'multiply by the wheel percentage drive_R = (127 - drive_R) min 0 'invert drive_R back to normal drive_R_done: 'drive_R section complete if drive_L < 127 then drive_L_reverse: 'is the left drive forward drive_L = (drive_L - 127) min 0 'subract 127 to get the forward value drive_L = (drive_L * p1_wheel)/254 'multiply by the wheel percentage drive_L = (drive_L + 127) max 254 'add 127 back for proper output goto drive_L_done: 'exit the left right section drive_L_reverse: 'the left drive is reverse drive_L = (127 - drive_L) min 0 'invert drive-L to get a forward value drive_L = (drive_L * p1_wheel)/254 'multiply by the wheel percentage drive_L = (127 - drive_L) min 0 'invert drive_R back to normal drive_L_done: 'drive_L section complete skipOption7: '>>>>>>>>>>>>Default Code <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ' Port 1 Y axis to PWM1, PWM3: Y-axis forward = CCW (looking at output socket) ' Port 1 X axis to PWM5: X-axis right = CW (looking at output socket) ' Port 1 Wheel to PWM7: Wheel forward = CCW (looking at output socket) ' Port 1 Top to RLY1, RLY2: Button Pressed = CCW (looking at output socket) ' Port 1 Trigger to RLY1, RLY2: Button Pressed = CW (looking at output socket) ' Port 3 Y axis to PWM2, PWM4: Y-axis forward = CW (looking at output socket) ' Port 3 X axis to PWM6: X-axis right = CW (looking at output socket) ' Port 3 Wheel to PWM8: Wheel forward = CCW (looking at output socket) ' Port 3 Top to RLY3, RLY4: Button Pressed = CCW (looking at output socket) ' Port 3 Trigger to RLY3, RLY4: Button Pressed = CW (looking at output socket) drive_L = 254 - drive_L 'Reverse the left drive relay1_fwd = p1_sw_trig 'Port 1 Trigger = RLY1 CW relay1_rev = p1_sw_top 'Port 1 Top = RLY1 CCW relay2_fwd = p1_sw_trig 'Port 1 Trigger = RLY2 CW relay2_rev = p1_sw_top 'Port 1 Top = RLY2 CCW relay3_fwd = p3_sw_trig 'Port 3 Trigger = RLY3 CW relay3_rev = p3_sw_top 'Port 3 Top = RLY3 CCW relay4_fwd = p3_sw_trig 'Port 3 Trigger = RLY4 CW relay4_rev = p3_sw_top 'Port 3 Top = RLY4 CCW '>>>>>>>>>>>>1 Joystick Drive - Optional Code - Install Jumper on SW5<<<<<<<<< ' This code mixes the Y and X axis on Port 1 to allow one joystick drive. ' Joystick forward = Robot forward ' Joystick backward = Robot forward ' Joystick right = Robot rotates right ' Joystick left = Robot rotates left if rc_sw5 = 0 then skipOption5 temp = drive_R drive_R = (((2000 + temp + drive_L - 127) Min 2000 Max 2254) - 2000) drive_L = (((2000 + temp - drive_L + 127) Min 2000 Max 2254) - 2000) drive_L = 254 - drive_L skipOption5: '>>>>>>>>>>>>Reverse Drive Direction - Optional Code - Install Jumper on SW6<<<< ' This code simply reverses the drive outputs, reversing the robot direction. if rc_sw6 = 0 then skipOption6 temp = Drive_R drive_R = drive_L drive_L = temp skipOption6: '>>>>>>>>>>>>Limit Switches - Optional Code - Install Jumper on SW8<<<< ' This code uses the switch inputs to stop motor movement in a specific direction. ' If a switch is ON, the value is 1. If a switch is OFF, the value is 0. if rc_sw8 = 0 then skipOption8 if rc_sw1 = 0 then sw1_off p3_x = p3_x MAX 127 'PWM6 wont go CCW if rc_sw1 is ON sw1_off: if rc_sw2 = 0 then sw2_off p3_x = p3_x MIN 127 'PWM6 wont go CW if rc_sw2 is ON sw2_off: if rc_sw3 = 0 then sw3_off p3_wheel = p3_wheel MAX 127 'PWM8 wont go CCW if rc_sw3 is ON sw3_off: if rc_sw4 = 0 then sw4_off p3_wheel = p3_wheel MIN 127 'PWM8 wont go CW if rc_sw4 is ON sw4_off: relay1_fwd = p1_sw_trig &~ rc_sw1 'RLY1 wont go CW if rc_sw1 is ON relay1_rev = p1_sw_top &~ rc_sw2 'RLY1 wont go CCW if rc_sw2 is ON relay3_fwd = p3_sw_trig &~ rc_sw3 'RLY3 wont go CW if rc_sw3 is ON relay3_rev = p3_sw_top &~ rc_sw4 'RLY3 wont go CCW if rc_sw4 is ON skipOption8: '>>>>>>>>>>>>Relay Feedback lights<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ' This drives the "Relay 1" and "Relay 2" "Robot Feedback" lights on the Operator ' Interface. if user_display_mode = 1 then user_mode_is_ON Out13 = relay1_fwd 'LED is ON when Relay 1 is CW Out12 = relay1_rev 'LED is ON when Relay 1 is CCW Out15 = relay2_fwd 'LED is ON when Relay 2 is CW Out14 = relay2_rev 'LED is ON when Relay 2 is CCW goto display_done user_mode_is_ON: 'Send drive_R to 7-segment display when PB_mode.bit5 = 1 out8 = drive_R.bit0 out9 = drive_R.bit1 out10 = drive_R.bit2 out11 = drive_R.bit3 out12 = drive_R.bit4 out13 = drive_R.bit5 out14 = drive_R.bit6 out15 = drive_R.bit7 display_done: '============================================================================= '========== OUTPUT DATA ====================================================== '============================================================================= ' The Serout line sends data to the Output uP. The Output uP passes this to each PWM 1-16 ' and Relay 1-8. The Output uP will not output data if there is no communication with the ' Operator Interface or if the Competition Mode is Disabled. Do not delete any elements ' from the Serout array. Set unused PWM outputs to 127. Set unused relay outputs to 0. ' ' Serout USERCPU, OUTBAUD, [255,255,(PWM1),relayA,(PWM2),relayB,(PWM3),(PWM4),(PWM5),(PWM6),(PWM7),(PWM8),(PWM9),(PWM10),(PWM11),(PWM12),(PWM13),(PWM14),(PWM15),(PWM16),(OSC)] Serout USERCPU, OUTBAUD, [255,255,drive_R,relayA,drive_L,relayB,drive_R,drive_L,p1_x,p3_x,p1_wheel,p3_wheel] Goto MainLoop: Stop