
PBASIC 2.x ENHANCED SYNTAX NOTES:

• New Control Character pre-defined constants
o To reflect the control characters allowed by the Stamp Windows Editor
o LF (10)
o CRSRUP (5)
o CRSRDN (6)
o CRSRLF (3)
o CRSRRT (4)
o CLRDN (12)
o CLREOL (11)
o CRSRXY (2, must be followed by an X-byte and a Y-byte)

• IF..THEN..ELSE..ENDIF

o Syntax: (Items in brackets ‘{}’ are optional)
IF condition(s) THEN statement(s) { ELSE statement(s) }

—OR—
IF condition(s) THEN
 statement(s)
{ ELSE }
 { statements(s) }
ENDIF

o Note: multiple statements can be included in the main or else parts of a single-line
IF..THEN by inserting colons “:” in between the statements, as in:

IF condition(s) THEN statement1 : statement2 ELSE statement3 : statement4
o Also note: ENDIF only required on multi-line IF..THEN statements.
o Up to 16 nested IF..THENs allowed.

• DO..LOOP

o Syntax: (Items in brackets ‘{}’ are optional)
DO { {WHILE | UNTIL} condition(s) }
 statement(s)
LOOP { {WHILE | UNTIL} condition(s) }

o The conditional statement can appear on the DO (to make a 0..N iterative loop) or on the
LOOP (to make a 1..N iterative loop) or it can be left off entirely, to make an endless loop.

o Up to 16 nested DO..LOOPs allowed.

• EXIT
o Causes execution to immediately move to the instruction following the end of the loop.
o Supported inside DO..LOOP
o Supported inside FOR..NEXT
o Up to 16 EXITs can appear in any give loop.

• READ/WRITE word-sized values

o Syntax: (Items in brackets ‘{}’ are optional)
READ location, { WORD } variable
WRITE location, { WORD } variable

• SELECT CASE

o Syntax: Note: (|) denotes mutually exclusive items. { } denotes optional items
SELECT expression
 (CASE | TCASE) (ELSE | condition(s))
 Statement(s)
 …
ENDSELECT

o expression can be a variable, a constant or an expression.
o Condition can be of the form:

• {cond-op} #
• cond-op is an optional conditional operator: =, <>, <, >, >= or <=
• # is a variable, a constant or an expression.

--OR--
• # TO #

• Indicates a range of the first number to the next number, inclusive.
• Conditional operators are not allowed in this form.

o Multiple conditions within the same case can be separated by commas “,”.
o When a case is true, the default function is for the case’s Statement(s) to be executed, then

program execution jumps to the first statement following the ENDSELECT.
o TCASE, meaning “Through CASE”, behaves exactly like CASE, except that it causes the

previous CASE (if executed) to continue program execution at the first statement within
the TCASE, instead of jumping to after the ENDSELECT. After execution of the
statements within TCASE, execution jumps to after ENDSELECT, unless followed by
another TCASE.

• PIN type
o Syntax:

symbol PIN constant-expression
o Context-sensitive symbol.
o In situations where you expect to “read” a variable, it acts like INx.
o In situations where you expect to “write” a variable, it acts like OUTx.
o In situations where the Stamp expects a constant, it acts like a constant x.
o Is always a constant when used in “pin” arguments of any command.

• Line-continuation

• Any line of code can be continued onto the next line by breaking the first line just after the
comma “,” separating arguments or list items.

o BRANCH Idx, [Label1, Label2,
 Label3, Label4]

o DEBUG “Hello “,
 “World!”

o SELECT X
CASE 10, 20 TO 40,
 50 TO 60, 100 : HIGH 1 ‘pin 1 high when X = 10, 20..40, 50..60 or 100
CASE > 100 : LOW 1 ‘Set pin 1 low when X > 100

 ENDSELECT

• ON
o Syntax: Note: (|) denotes mutually exclusive items. { } denotes optional items

ON expression (GOTO | GOSUB) label {, label…}

• $PBASIC directive.
o Syntax:

‘{$PBASIC #} ;where # is 2.0 or 2.5
o Version 2.0 is the “classic” tokenizer.
o Version 2.5 is the “enhanced”tokenizer.

• #IF..#THEN..#ELSE..#ENDIF directives

o Conditional compilation directive. Surround code to include/exclude based on condition.
o Syntax: Similar to IF..THEN..ELSE..ENDIF. (Items in brackets ‘{}’ are optional)

#IF condition(s) #THEN statement(s) { #ELSE statement(s) } #ENDIF
—OR—

#IF condition(s) #THEN
 statement(s)
{ #ELSE }
 { statements(s) }
#ENDIF

o Condition can contain compile-time constants, defined symbols, numbers, parenthesis and
the following operators:
 =
 >
 <
 <>
 >=
 <=
 AND
 OR
 XOR
 NOT
 +
 -
 *
 /
 <<
 >>

o Up to 16 nested #IF..#THENs allowed.
.

• #SELECT #CASE directives
o Syntax: Similar to SELECT CASE. Note: (|) denotes mutually exclusive items. { }

denotes optional items
#SELECT expression
 #CASE (#ELSE | condition(s))
 Statement(s)
 …

#ENDSELECT
o expression can contain compile-time constants, defined symbols, numbers and parenthesis.

It can also contain the following operators:
 +
 -
 *

• /
 <<
 >>

o Condition can be of the form:
• {cond-op} #

• cond-op is an optional conditional operator: =, <>, <, >, >= or <=
• # is a variable, a constant or an expression.

--OR--
• # TO #

• Indicates a range of the first number to the next number, inclusive.
• Conditional operators are not allowed in this form.

o Multiple conditions within the same case can be separated by commas “,”.
o When the first case that is true is encountered, the case’s Statement(s) are compiled into the

code and all other cases are ignored.

• #DEFINE directive
o Defines a pre-compile-time symbol that may be tested using the #IF or #SELECT

directives.
o Syntax:

#DEFINE symbol { = expression}.
o expression can contain compile-time constants, defined symbols, numbers and parenthesis.

It can also contain the following operators:
 +
 -
 *

• /
 <<
 >>

o By using the optional expression parameter, a value can be assigned to the defined symbol.
For example: #DEFINE Mode = 5 defines a precompiler symbol called Mode that is
equal to the number 5.

o By omitting the optional expression parameter, the symbol is treated as defined. This
allows a simple testing method such as:

#DEFINE CompileAll
…
#IF CompileAll #THEN
…
#ENDIF

Note that if the first line, the #DEFINE, statement is removed or commented out of the
code, the #IF..#THEN statement will evaluate to false (meaning the CompileAll symbol is

not defined) and the statements within the #IF..#ENDIF block will NOT be compiled into
the code, in this case.

• #ERROR directive
o Creates a user-defined error message.
o Syntax:

#ERROR TextString.
o TextString is a string of characters and ASCII constants that will be displayed as an error

message if the #ERROR directive is encountered during compilation.
o This allows an error for situations that can not be, or are not, handled. For example, if a

developer wrote a program that will only work on the BS2e and above, that developer can
keep a user from downloading it to a BS2 with the following:

#IF $STAMP = BS2 #THEN
 #ERROR “Sorry, this program will only work on a BS2e or above!”
#ENDIF

If the user ever compiles it for a BS2, the $STAMP precompiler symbol will be set equal to
BS2, the #IF..#THEN directive will evaluate to True and the #ERROR directive inside the
#IF..#ENDIF block will be executed, generating a compile error with a message, “199-
Sorry, this program will only work on a BS2e or above!”.

The “199-“ means error message number 199, which is used for user-defined errors.

• Error occurs if FOR found without NEXT
• Error occurs if DO found without LOOP
• Error occurs if multiline IF found without ENDIF
• Error occurs if LABEL found without colon

o Even catches things like PULSEOUT 1, 1000 (PULSOUT is misspelled)… will be thought
of as a label and will cause the same error (more clear than in previous tokenizer).

• Disallows overlapping code blocks.

