

Innovation First, Inc.
2004 Programming Reference Guide

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 2

Table of Contents

1. PICmicro® Processor and Memory ...3

1.1. Processors.. 3
1.2. PICmicro® MCU Program Memory.. 3
1.3. Default vs. Custom Programs.. 3
1.4. Programming Language and Windows Software.. 4

2. PICmicro® Software Structure ...4
2.1. Comment Format... 6
2.2. Declare Variables .. 7
2.3. Define Macros Used as Aliases... 8
2.4. Define Macros Used as Constants... 8
2.5. Initialization... 9
2.6. main.c: while(1)... 9
2.7. user_routines.c: Process_Data_From_Master_uP(); ... 10
2.8. user_routines.c - Getdata Data Input ... 10
2.9. user_routines.c – Default_Routine call: Perform Operations Here....................................... 11
2.10. user_routines.c – “Add your own code here.”... 11
2.11. user_routines.c - Putdata Data Output... 12
2.12. user_routines.c – Return to main.c .. 12

3. Program Inputs ...13
3.1. Digital Inputs ... 14
3.2. Analog Inputs .. 15

4. Program Outputs ..17
4.1. PWM Outputs.. 17
4.2. Standard Digital Outputs ... 19
4.3. Relay Outputs (FRC only)... 20
4.4. Solenoid Digital Outputs (Mini-RC only)... 21

5. Downloading User Code to the Robot Controller ...22
5.1. Downloading Steps.. 22
5.2. PROGRAM STATE LED ... 22

6. Additional Programming Techniques...23
6.1. The printf() Command... 23
6.2. Other Serial Debug Statements ... 24
6.3. Robot Feedback and User Mode (FRC only) .. 25
6.4. rc_mode_byte – Disabled, Autonomous, and User Modes (FRC only)................................ 26
6.5. Simulator Mode in MPLAB® .. 27

7. PICmicro® Commands ...28
8. References ...28
9. Appendix A: Document Version History ..29

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 3

1. PICmicro® Processor and Memory

1.1. Processors

Each Robot Controller has two built-in PICmicro® 18F8520 microcontrollers from Microchip
Technology. One of these microcontrollers uses memory that is programmable by the user. This
programmability allows customization of user controls, semi-automatic robot functions, and autonomous
robot functions. This User processor has access to all operator input data and robot sensor data, as well
as control over the PWM and digital outputs used to control motors, relays, solenoids, etc.

1.2. PICmicro® MCU Program Memory

The PICmicro® in each Robot Controller has onboard FLASH memory that can be used to store the
user’s custom programs. This memory is non-volatile; meaning that it keeps its memory after power has
been removed. There is a total of 32k bytes of memory space available to the user in which to store
custom programs.

The program in the Robot Controller can be changed by downloading a new program into the
PICmicro® memory through the PROGRAM port (more details in Section 5 on page 22).

1.3. Default vs. Custom Programs

The Robot Controller is supplied with a “Default” program loaded into memory in order to help get the
robot up and running quickly. When more sophisticated control of the robot is desired, a custom
program can be quickly created by modifying the Default program. Default “Source Code” for the
default programs are provided at www.InnovationFirst.com. Since Innovation First offers both a smaller
MINI Robot Controller and a full-size Robot Controller, two different sets of code are provided on the
web site. The programs are not interchangeable from one type to the other, but the manner of
programming is the same.

Master
Micro-

Controller

User
Micro-

Controller
Operator Input

Robot
Outputs

Robot Digital Inputs

Robot Analog Inputs

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 4

1.4. Programming Language and Windows Software

Programs for the Robot Controller can be written in Assembly language or C. For ease of use, the
default code has been written in the C programming language. This high-level language was selected
because it is very powerful and has become an industry standard. Should the user desire, Assembly
code can also be mixed with the C code.

Throughout this document it is assumed that the reader is familiar with the C programming
language and its conventions.

MPLAB® IDE is the name of the free Windows program used to edit, compile, and debug PICmicro®
programs. MPLAB® C18 is the name of the C compiler that must also be installed for use with MPLAB®
IDE. Microchip has developed a special version of this C compiler for use with Innovation First Robot
Controllers. This product, called C-BOT, is included in some Robot Controller kits, or it may be
purchased separately from Innovation First. The full version of MPLAB® C18 will also work.

For downloading custom programs to the Robot Controller, a program named IFI Loader must be used.
This is included in the C-BOT package, or you can get this program and the Default Code for your
Robot Controller as free downloads from www.InnovationFirst.com.

2. PICmicro® Software Structure

Inside MPLAB® IDE is where the Robot Controller’s program is edited and compiled. From the
“File/Open Workspace…” menu you should open the workspace (.mcw) file downloaded from the
Innovation First web site. You will then see a window listing all the files used in the project (.mcp).
All of these files are necessary, but only a few of them should be edited by the user to create a custom
program. See the next page for details on which files should be edited. To open a file for viewing or
editing, double click on it in the workspace window.

The PICmicro® program used in the Innovation First Robot Controllers must adhere to a pre-defined
structure. The structure does not limit the capability of your software; the structure ensures that the
Robot Controller operates properly. This structure is described in the block diagram on the next page.

You can refer to Microchip’s MPLAB® C18 C Compiler Libraries manual for more information on
PICmicro® commands. That document will not teach you to program in C, but it details libraries
specific to the PICmicro® architecture. Not all of the libraries can be used to program the Robot
Controller, as specific functions and registers are reserved for correct operation of the Robot Controller.

For Assembly language instructions and detailed PICmicro® device information, refer to the 18FXX20
datasheet from Microchip.

Note that there is a 64 character path/name limit inherent in the Microchip compiler. This means that
you will get a compilation error if you try to compile a project which has any file whose path and name
length exceeds 64 characters. Therefore your working project directory should be at or near the root of
the file-system. (e.g. C:\EduCode\)

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 5

IFI Initialization

Getdata
Data Input

Putdata
Data Output

Call User Code

 main.c

Map user inputs
to outputs

Process local
sensor inputs

Prepare
feedback for OI
(full-size RC only)

user_routines.c

Primarily edit
this file.

User may add macros and
function prototypes here.

Advanced users
can add to this file.

No need to
modify this file.

User Initialization

Initialize Variables
Set up Inputs/Outputs

Refer to this file
for useful aliases.

The user must only edit these
three files:
user_routines.c
user_routines_fast.c
user_routines.h

Useful functions
reside in here.

Main
Loop

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 6

2.1. Comment Format

Comments are additional text added to a program to clarify what the code is doing, or to explain
concepts important to understanding the code in the larger context of the robot. Comments are ignored
by the compiler and are not processed by the microcontroller. Lines are commented by enclosing the
comment text within the following structure: /* */

Comment Line Examples: The line of code below is completely commented (line starts with /* and ends with
*/) and is used for informational purposes. It has no effect on the operation of a program.

/* This text is for informational purposes and is not processed by the compiler. */

Comments can span more than one line:
/* Beginning of comment
 Continuing comment
 End of comment
*/

You cannot nest comment structures. The following is illegal and will not compile:
/* This is /* not allowed */ and won’t work. */

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 7

2.2. Declare Variables

All variables used in the programs must be declared by type and name . The 18F8520 has 2k bytes of
data memory available in which to store variables. Variables may be declared in the .c file where they
are used. There are two primary types of variables that are used in the default Robot Controller code.
For variables whose values might range from 0 to 255, the type of unsigned char is used. When
values might range from 0 to 65535, unsigned int is used. See MPLAB® C18 C Compiler User’s
Guide (Section 2.1 on page 9) for details on all data types supported by the 18F8520.

Note that floating point support is implemented using a software library, which makes floating point
math significantly slower than integer math. This could impact the operation of your robot if your code
takes too long to execute, so be careful.

The default code defines all the standard input and output variables. The names of the variables used in
the default program can be changed; however, use caution since the name is used throughout the default
code and must be changed at every instance. Declare any additional variables required. The best
practice is to affix all your new variables with the same prefix in order to avoid using the same names as
elsewhere in the default code. This also enables you to easily share code with other users without
worrying about clashes of global variables that have the same name. The examples below use the
author’s initials as a prefix.

Declare Variables Examples:

/* This is how variables are declared. */
unsigned char dm_loop_count;
unsigned int dm_output_value; /* Don’t forget the semicolon! */

/* You can declare more than one variable of the same type per line. */
unsigned char dm_loop_count1, dm_loop_count2, dm_loop_count3;

/* You can also initialize the value of variables at the same time you declare them. */
unsigned int dm_countdown = 10;
float dm_pi = 3.1415;

Sharing Variables Between Files Example: If you want to use the same variable (and its value) in more than
one file, this is how you would do it. This is commonly referred to as a global variable.

unsigned int dm_wheel_turns = 25; /* Declared in user_routines.c, for example. */

If a variable is defined in user_routines.c (as in the first line above), but you also want to use this variable in
user_routines_fast.c, you must put the following line at the top of user_routines_fast.c.

extern unsigned int dm_wheel_turns; /* Put at the top of user_routines_fast.c, for example.*/

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 8

2.3. Define Macros Used as Aliases

Macros provide alternate and sometimes shorter names for constants, variables, and sub-divisions of
variables. In the old IFI control systems using PBASIC, alternate names for system variables were
called aliases. In the new system this is achieved by using macros. Macros are substituted into your
code at compile-time, and simply make your code easier to write and read. They also don’t use any
additional program memory, so you can use them liberally.

Just like in the old system, aliases are used to provide logical names for the Analog Inputs, Digital I/O,
Relay Outputs, Solenoid Outputs, and PWM Outputs. Macro aliases can also be used to point to a
specific bit within a byte, as in the example below. In the default code, all macro aliases have been
placed in the ifi_aliases.h file. You may add your own macros to the user_routines.h file.

Define Aliases Example: Each line declares one alias. After each variable you can place comments on the use
of the alias in your application. You can see how aliases can save you a lot of typing.

#define dm_countup dm_countdown /* countdown and countup refer to the same variable. */

#define rc_dig_int01 PORTBbits.RB2 /* Refers to a specific input pin of the PICmicro
®
. */

#define limit_switch1 rc_dig_int01 /* Multiple aliases for the same item are allowed. */
#define p1_sw_trig rxdata.oi_swA_byte.bitselect.bit0 /*Joystick Trigger Button */

2.4. Define Macros Used as Constants

Macros can also be used to define constants, which are names with fixed values assigned to them.
Constants provide a convenient means to organize, locate, and edit these values in your code. They do
not require any program memory or code space, and it is very good programming practice to use them
instead of typing the numeric value each time. This way it is easy to make changes, and it is also easy to
remember what a value represents. It is recommended that you assign your constants at the top of the
user_routines.h file.

Define Constants Example: Each line below assigns one constant. The Default Code has several examples of
constants.

#define DATA_SIZE 30
#define SPI_TRAILER_SIZE 2
#define SPI_XFER_SIZE DATA_SIZE + SPI_TRAILER_SIZE /* So it will equal 32. */
#define PWM_NEUTRAL 0x7F /* This is how to write the hexadecimal number 7F. */

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 9

2.5. Initialization

Every C program has a function called main. This is, exactly as it sounds, the primary routine of the
program, and is located inside the main.c file. The first thing that is done inside the main function is
to initialize the program, or set things up for the first time.

First a routine called IFI_Initialization() is called, which sets up crucial system parameters.
This call should not be deleted or tampered with.

Next the routine called User_Initialization() is called. This function resides in the
user_routines.c file and may be edited by the user. In this routine the multi-function pins of the
Robot Controller can be set up as either digital inputs or digital outputs (or analog inputs for the MINI
Robot Controller). Follow the examples given in the code to accomplish this.

Not all pins, registers, functions, and peripherals of the 18F8520 User processor are available to the user.
In the initialization section, as throughout your custom code, be careful not to address, use, or otherwise
modify any of them which are already in use elsewhere in the default code. For a list of features which
are off-limits or unusable, please look in the ifi_picdefs.h file. Ports and registers which should
not be used are marked with the comment: /* Reserved - Do not use */

For the most part you should not run into any problems using reserved ports or registers, unless you are
trying to use some very advanced features, so don’t panic. You can’t break anything by trying, either, so
don’t be afraid to experiment. The 18F8520 is a very powerful chip, so try to use its full potential.

2.6. main.c: while(1)

This is where the Main Loop begins. Since we want our program to continuously execute, rather than
only run one time and stop, there is a while loop inside main. Essentially it is saying “While 1 is true,
execute everything between my { } braces.” Since 1 is always true, this will loop forever.

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 10

2.7. user_routines.c: Process_Data_From_Master_uP();

The core function of the default PICmicro® program is to call the
Process_Data_From_Master_uP() function. This routine performs the following:

1. Read in the Input Data from the operator and on-board robot sensors.
2. Perform specific functions based on the Input Data.
3. Send out the results to perform physical movement of the robot’s motors, valves, etc.

This structure ensures that 1) new inputs (joysticks, etc.) are continuously read in, and 2) the outputs
(motors, Victors, Spikes, Solenoids, etc.) continuously receive new commands.

As you can see in main.c, the Process_Data_From_Master_uP() function is only called every
17ms for the MINI Robot Controller and every 26ms for the FRC Robot Controller. This is because the
Master processor only sends fresh data to the User processor at that rate.

While this is the maximum rate at which new data is received from the remote operator, it is possible to
execute faster code by placing it outside the fixed timing loop, inside the
Process_Data_From_Local_IO()routine in the user_routines_fast.c file. Anything in
this function will execute at the fastest rate possible, or every time the main loop repeats. Before using
it, though, you should make sure you understand and can use the slower
Process_Data_From_Master_uP() loop, so we will continue our explanation…

2.8. user_routines.c - Getdata Data Input

The first part of the Main Loop is the Getdata command. This command reads a serial stream of data
from the Master processor. For proper operation of the Robot Controller this command should not be
moved or modified. Getdata is very similar to the old SERIN command from the older PBASIC
systems.

P
ro

ce
ss

_D
at

a_
Fr

om
_M

as
te

r_
uP

Getdata

Data Input

Putdata
Data Output

Call
Default_Routine

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 11

2.9. user_routines.c – Default_Routine call: Perform Operations Here

After the Getdata function is called and new data is received, the Default_Routine() routine is
called. This routine is also located in user_routines.c and this is where all the default operation
of the robot is assigned. You can modify this routine to re-map the inputs to outputs, and to perform
special functions. If you do not wish to execute any of the code in the Default_Routine, you can delete
that line or comment it out.

Perform Operations Example: The main loop below is an abridged example of the FRC Default_Routine.
Refer to the Default Code for a more complete example. The code below performs the following functions:
1. Port 1 Y axis linked to PWM1. PWM2 and PWM3 are set to neutral.
2. Port 3 Trigger activates Relay 3 in the Forward direction. See the Relay Outputs on page 20.
3. Port 3 Thumb button activates Relay 3 in the Reverse direction.
4. Robot digital input 1 automatically activates the roller forward at the speed set by constant ROLLER_SPEED.

/*========= PERFORM OPERATIONS ==*/

/*--------- Joystick to PWM ---*/
 pwm01 = p1_y;
 pwm02 = 127; /* Set to neutral. */
 pwm03 = PWM_NEUTRAL; /* Another way to set to neutral. Remember our constant? */

/*--------- Button to Relay ---*/
 relay3_fwd = p3_sw_trig; /* Relay 3 Forward = Port 3 Trigger */
 relay3_rev = p3_sw_top; /* Relay 3 Reverse = Port 3 Thumb button */

 /* relay3_fwd is an Alias to an output pin. */
 /* p3_sw_trig is an Alias to a bit in oi_swA_byte. */

/*--------- Roller Code ---*/
 if (rc_dig_in01 == 0) /* Don’t forget to use a double-equals for conditionals! */
 {
 Roller_Out = ROLLER_SPEED;
 }
 else
 {
 Roller_Out = PWM_NEUTRAL;
 }

2.10. user_routines.c – “Add your own code here.”

In this section you can add any custom code you wish. You make your own function and call it here, or
you can just add your code in-line before the Putdata call. You are also welcome to leave it blank.

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 12

2.11. user_routines.c - Putdata Data Output

The final part of the Main Loop is the Putdata command. This command sends a serial stream of data
back to the Master processor. The Master processor then uses this data to drive some of the PWM
outputs and to monitor the status of the User processor. Putdata performs a function very similar to
the SEROUT command from the older PBASIC systems.

Do not delete, modify, or move the Putdata command line. If it is not executed at least every 17 ms
(for the Mini-RC system) or 26.2ms (for the FRC system), the Master processor will disable the User
processor and your RC will not function. You can tell this has happened if the PROGRAM STATE
LED is flashing red. For this reason you should not put any infinite loops in your code, or any other
code which might take a very long time to execute. Remember, extensive use of floating point math can
take a very long time, so be careful.

On the other hand, calling the Putdata function more frequently than this rate is not particularly
advantageous, although neither is it harmful. It will not make the Master processor do anything more
often with the data sent to it. Therefore, inside the Process_Data_From_Master_uP()function
is the best place for it.

It is recommended that you set unused PWM outputs to 127, unused relay and digital outputs to 0, and
unused solenoid outputs to 0 before calling the Putdata function.

On the FRC, the Master processor will disable all outputs if there is no communication with the
Operator Interface or if the Competition Mode is Disabled, unless you set the Robot Controller to run in
Autonomous mode. See the appropriate user’s manuals for details on these conditions.

Also, in the FRC system the Master processor sends the data received from the Putdata command
over the radio link back to the Operator Interface, so that the user can have some form of feedback,
whether by LEDs, on the multi-segment display, or on their PC using the Dashboard software (available
from www.InnovationFirst.com).

2.12. user_routines.c – Return to main.c

The Main Loop is now complete. Program execution will return to the top of the while(1) loop in
the main.c file and do it all again. This loop will repeat forever.

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 13

3. Program Inputs

The following sections describe the types of data input to the PICmicro® program. The User program
receives the remote operator’s input data from the Master processor inside the Robot Controller. Most
inputs, however, come from local sensors and ports on the Robot Controller which are connected
directly to the User processor.

Remote Operator Inputs

For a FIRST Robotics Control System which uses an RS-422 Radio for communicating with an
Operator Interface, the human operator’s controls (both digital and analog) are passed into the Robot
Controller through the radio port. The Master processor handles this communication and then sends the
control signals to the User processor.

For an MINI Robot Controller the human operator’s commands are sent using a standard hobby radio-
control (R/C) transmitter and receiver pair. The hobby R/C receiver is interfaced with the Robot
Controller as detailed in the Robot Controller’s user guide. The Master processor takes the signals from
the hobby R/C receiver and digitizes them before sending them to the User processor.

Local Sensor Inputs

The other inputs to the User program come from the pins on the Robot Controller which are connected
directly to the User processor. The User program has access to these pins and can get both digital and
analog information from them.

The next two sections will talk about the digital and analog inputs that are received by the User
processor inside the Robot Controller, whether from the remote operator or from local sensors.

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 14

3.1. Digital Inputs

Digital Inputs are defined as inputs that are either HIGH or LOW. Buttons and switches are the most
common form of digital inputs. In software a digital input is either a zero (0 = LOW) or a one (1 =
HIGH). The Digital Inputs on the Robot Controllers and Operator Interfaces have pull-ups, which
means that they are normally high, or 1 when not connected to anything. That means that if a digital
input is open or not connected, the value read by the PICmicro® digital input is HIGH (= 1). If a digital
input is connected to ground, the input is LOW (= 0). The buttons on the joysticks are an example of
switches connected to digital inputs on the Operator Interface. Limit switches are often connected to
digital inputs on the Robot Controller.

Operator Interface Digital Inputs
Only the FRC Robot Controller can communicate with the Operator Interface. Refer to the Operator
Interface Reference Manual for details on the Digital Inputs. The sixteen (16) Digital Inputs from the
Operator Interface are grouped into two bytes, OI_SWA and OI_SWB. These input variables are aliased
into more meaningful names such as p1_sw_trig which refers to the trigger of the Joystick connected
to Port 1.

Digital Inputs: The Operator Interface Digital Input aliases are found in the file ifi_aliases.h of the
Default Code.

/*--------- Example aliases for each OI switch input --------------------------------------*/
#define p4_sw_trig rxdata.oi_swB_byte.bitselect.bit4 /*Joystick Trigger Button*/
#define p4_sw_top rxdata.oi_swB_byte.bitselect.bit5 /*Joystick Top Button*/
#define p4_sw_aux1 rxdata.oi_swB_byte.bitselect.bit6 /*Aux input*/
#define p4_sw_aux2 rxdata.oi_swB_byte.bitselect.bit7 /*Aux input*/

Robot Controller Digital Inputs
Refer to the appropriate Robot Controller Reference Manual for details on the number and location of
the Digital I/O pins. They are pins which go directly to the User processor. These pins can be
configured as either inputs or outputs in your initialization. See the User_Initialization routine
in user_routines.c for examples of configuring pins as inputs.

The Default Code already has some of these I/O pins set up as Inputs that you can use with no change to
the initialization code. They can be referenced using aliases as in the following examples.

Digital Inputs: The Robot Controller Digital Input aliases are found in the ifi_aliases.h file.

/*--------- Example aliases for default FRC RC digital inputs -----------------------*/
#define rc_dig_in13 PORTGbits.RG4
#define rc_dig_in14 PORTCbits.RC0
#define rc_dig_in15 PORTJbits.RJ4
#define rc_dig_in16 PORTJbits.RJ5

/*--------- Example aliases for default MINI RC digital inputs ----------------------------*/
#define rc_dig_in13 PORTHbits.RH4
#define rc_dig_in14 PORTHbits.RH5
#define rc_dig_in15 PORTHbits.RH6
#define rc_dig_in16 PORTHbits.RH7

NOTE: There are differences between the pin-outs of each type of Robot Controller. This is why the full-size
and Mini Robot Controllers each have a different version of code and they are not interchangeable.

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 15

3.2. Analog Inputs

Analog Inputs are defined as inputs that can have any voltage value between 0 and 5 volts, not just ON
or OFF. Joysticks, Potentiometers, and Gyro sensors are typically connected to Analog Inputs. Both the
Robot Controller and the Operator Interface (FRC system only) have the capability to measure analog
inputs.

Operator Interface Analog Inputs
Refer to the Operator Interface Reference Manual for details on the Analog Inputs. The sixteen (16)
Analog Inputs from the Operator Interface are each stored in bytes, such as p1_x and p1_y
corresponding to the X and Y Joystick axis connected to Port 1. The CH FlightStick joystick used with
the Operator Interface has three analog inputs per joystick, the X axis, the Y axis, and the Wheel.

In software, an analog input from the Operator Interface (FRC only) is represented as a number from 0
to 254. The table below shows how an Analog Input varies as the joystick is moved. In the FRC Robot
Controller’s Default Code, the Analog Inputs from the Operator Interface are mapped directly to the
PWM Outputs without modification (see PWM Outputs on page 17). The Mini-RC system uses the
joysticks on standard hobby radio controllers as remote analog inputs. These inputs are similarly
mapped directly to the PWM Outputs on the Robot Controller.

Joystick Function Position and Analog Input Value
Y Axis Full Forward = 254 Neutral = 127 Full Back = 0 – 25*
X Axis Full Left = 254 Neutral = 127 Full Right = 0 – 25*
Wheel Full Forward = 254 Neutral = 127 Full Back = 0 – 25*

* Note: The joystick axes rarely go all the way to zero. This is normal. See PWM Outputs on page 17.

Analog Inputs: The Operator Interface Analog Input aliases are found in the file ifi_aliases.h of the FRC
Default Code.

/*--------- Operator Interface (OI) - Analog Inputs ---------------------------------------*/
#define p1_y rxdata.oi_analog01
#define p2_y rxdata.oi_analog02
#define p3_y rxdata.oi_analog03
#define p4_y rxdata.oi_analog04
#define p1_x rxdata.oi_analog05
#define p2_x rxdata.oi_analog06
#define p3_x rxdata.oi_analog07
#define p4_x rxdata.oi_analog08
#define p1_wheel rxdata.oi_analog09
#define p2_wheel rxdata.oi_analog10
#define p3_wheel rxdata.oi_analog11
#define p4_wheel rxdata.oi_analog12

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 16

Radio Control PWM Analog Inputs
Refer to the Mini Robot Controller Reference Guide for details on interfacing it with standard hobby
radio control (R/C) transmitters and receivers. The joystick movements from the transmitters then
become inputs to the Robot Controller, with their corresponding values stored in bytes.

Analog Inputs: The hobby R/C receiver input aliases are found in the file ifi_aliases.h of the Mini-RC
Default Code.

/*---------- Aliases for each radio-control receiver PWM input ---------------------------*/
#define PWM_in1 rxdata.oi_analog01
#define PWM_in2 rxdata.oi_analog02
#define PWM_in3 rxdata.oi_analog03
#define PWM_in4 rxdata.oi_analog04

Robot Controller Analog Inputs
The Robot Controller Analog Inputs have a 10-bit resolution. Refer to the appropriate Robot Controller
Reference Guide for details on the number and location of the Analog Inputs. (Note: The Analog Inputs
of the Mini Robot Controller are configured in the initialization section, as they can also be used as
Digital I/O if desired. The Mini Default Code already has some of these Analog Inputs configured so
that you can use them with no change to the initialization code.)

In order to use them you must call the Get_Analog_Value function, which resides in the
ifi_utilities.c file. This function will return a 10-bit value stored in an unsigned int, or
two bytes. See the example below if you want to map the 10-bit value to an 8-bit variable, like a PWM
output.

Analog Inputs: The Robot Controller Analog Inputs are found in the file ifi_aliases.h and used as
follows.

/*--------- Robot Controller (RC) - Analog Input Aliases ----------------------------------*/
#define rc_ana_in01 ADC_CH0
#define rc_ana_in02 ADC_CH1
#define rc_ana_in03 ADC_CH2
#define rc_ana_in04 ADC_CH3

/* Example of using the Analog Inputs to map an analog input to a PWM output. */

unsigned int sensor1;
unsigned char sensor1_8bits;

sensor1 = Get_Analog_Value(rc_ana_in01); /* Assign the analog reading to a variable. */
sensor1_8bits = (unsigned char)(sensor1 >> 2); /* Only take the 8 most significant bits, */
pwm01 = sensor1_8bits; /* because PWM OUTPUTS can only be 8 bits. */

/* Or you can do it all in one line like this. */
pwm01 = (unsigned char) (Get_Analog_Value(rc_ana_in01) >> 2);

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 17

4. Program Outputs

The following sections describe the types of data and actions that are output from the PICmicro®
program. Most of the output pins of the Robot Controller are directly tied to the User processor and can
be addressed by the user in their code.

4.1. PWM Outputs

The PWM Output Ports on the Robot Controllers are all controlled by PICmicro® software. Each PWM
output provides variable speed control for a motor in both Forward and Reverse.

PWM stands for Pulse Width Modulation and is the type of signal commonly used to control Speed
Controllers such as the Victor 884. This PWM signal is the standard hobby R/C type used on model
airplane controls. This PWM is not the regular duty-cycle type output by most microcontrollers.

PWM Outputs: The PWM outputs have aliases defined in the ifi_aliases.h file. By assigning a value
from 0 – 255 to them you can control the speed of a motor.

/*--------- Example Aliases for Robot Controller PWM outputs ------------------------------*/
#define pwm01 txdata.rc_pwm01
#define pwm02 txdata.rc_pwm02
#define pwm03 txdata.rc_pwm03
#define pwm04 txdata.rc_pwm04

In the Mini-RC system any given PWM output signal can be created by either the Master or the User
processors. See the Setup_Who_Controls_Pwms function in the User_Initialization
routine of the user_routines.c file in the Mini-RC Default Code to do this. In the Default Code
the Master processor controls all PWMs according to the values stored in pwm0x variables and sent in
the PutData() function. This means that PWM outputs can only be changed every 17ms when the
Master gets the new values from the User processor. If the User processor is set up to control one or
more PWM outputs, it can change those outputs every program loop if desired by using the
Generate_Pwms function.

Mini Robot Controller PWM Outputs: Here are some example lines of code to show how the PWMs are
controlled.

/* Setup Master processor to control PWMs 1-4, User to control PWMs 5-8. */
 Setup_Who_Controls_Pwms(MASTER,MASTER,MASTER,MASTER,USER,USER,USER,USER);

 pwm01 = pwm02 = pwm03 = pwm04 = pwm05 = pwm06 = pwm07 = pwm08 = 42;

/* Every 17ms the Master will generate PWMs 1-4 with the values stored in pwm0x variables. */
 Putdata(&txdata);

/* The User processor will generate PWMs 5-8 with whatever values are passed as arguments to
this function. Notice that the values for PWMs 1-4 will be ignored, since the Master
controls them. Also notice that PWM 8 will be set at neutral. It must be type-cast. */
 Generate_Pwms(1,Z,ZERO,ZERO,pwm05,pwm06,pwm07,(unsigned char)127);

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 18

In the FRC system the values for PWM signals 1-16 are all sent to the Master processor from the User
processor using the PutData() function. The Master processor, however, only uses this data to
generate the signals for PWMs 1-12. The signals for PWMs 13-16, on the other hand, are generated
directly by the User processor by using the Generate_Pwms function. This means that PWMs 1-12
can only be changed every 26ms, while 13-16 can be changed as often as the program loop executes if
called more frequently. You must use both the Putdata(&txdata) and the
Generate_Pwms(pwm13,pwm14,pwm15,pwm16) commands to generate all 16 PWM output
signals.

The most common method of controlling an FRC PWM output is via the joystick Analog Input. By
sending a joystick Analog Input to a PWM output, a motor connected to the PWM port will act as
follows:
Action (FRC system) Function and Analog Value
PWM Speed Controller Full Forward = 254-227 Neutral = 136-123 Full Reverse = 0 – 37
Joystick Y Axis Full Forward = 254 Neutral = 127 Full Back = 0 – 25
Joystick X Axis Full Left = 254 Neutral = 127 Full Right = 0 – 25
Joystick Wheel Full Forward = 254 Neutral = 127 Full Back = 0 – 25

Refer to the appropriate Robot Controller Reference Manual for details on the number and location of
the PWM Outputs.

Example (using the default FRC software): Move the Y-axis on the Port 1 Joystick forward to make a
motor connected to PWM1 turn. The further you push the joystick, the faster the motor turns. From a
neutral position move the Y-axis on the Port 1 Joystick backwards to make a motor connected to PWM1
turn the other direction. Again, the further you push the joystick, the faster the motor turns.

FRC Robot Controller PWM Outputs: The FRC default code maps the joystick Analog Inputs from the
Operator Interface to the PWM outputs as follows. Elsewhere in the code, the Generate_Pwms() and Putdata()
functions are called to generate the PWM output signals.

/*---------- Analog Inputs (Joysticks) to PWM Outputs-----------------------
 * This maps the joystick axes to specific PWM outputs. */
 pwm01 = p1_y;
 pwm02 = p2_y;
 pwm03 = p3_y;
 pwm04 = p4_y;
 pwm05 = p1_x;
 pwm06 = p2_x;
 pwm07 = p3_x;
 pwm08 = p4_x;
 pwm09 = pwm13 = p1_wheel;
 pwm10 = pwm14 = p2_wheel;
 pwm11 = pwm15 = p3_wheel;
 pwm12 = pwm16 = p4_wheel;

 Generate_Pwms(pwm13,pwm14,pwm15,pwm16);
 Putdata(&txdata); /* Send my data to the master microprocessor. */

NOTE: If you call the Generate_PWMs routine too quickly, not every device to which you send the
signal may be able to handle the fast update rate. Please check the device specifications or else
experiment to determine how often the routine may be called for your application.

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 19

4.2. Standard Digital Outputs
Refer to the appropriate Robot Controller Reference Manual for details on the number and location of
the Digital I/O pins. They are pins which go directly to the User processor. These pins can be
configured as either inputs or outputs in your initialization. See the User_Initialization routine
in user_routines.c for examples of configuring pins as outputs.

The Default Code already has some of these I/O pins set up as Outputs that you can use with no change
to the initialization code. They have aliases as in the following examples.

Digital Outputs: The Robot Controller Digital Output aliases are found in the file ifi_aliases.h of the
Default Code.

/*--------- Example aliases for default FRC RC digital outputs ----------------------*/
#define rc_dig_out13 LATGbits.LATG4
#define rc_dig_out14 LATCbits.LATC0
#define rc_dig_out15 LATJbits.LATJ4
#define rc_dig_out16 LATJbits.LATJ5

/*--------- Example aliases for default MINI RC digital outputs ---------------------------*/
#define rc_dig_out13 LATHbits.LATH4
#define rc_dig_out14 LATHbits.LATH5
#define rc_dig_out15 LATHbits.LATH6
#define rc_dig_out16 LATHbits.LATH7

/*--------- Example usage of digital outputs --*/
 if (pwm01 > 227) /* If pwm01 is greater than 227... */
 {
 rc_dig_out1 = 1; /* then output a HIGH on digital output port 1 */
 rc_dig_out2 = rc_dig_in3; /* and map digital input 3 to digital output 2. */
 }

NOTE: There are differences between the pin-outs of each type of Robot Controller. This is why the full-size
and Mini Robot Controllers each have a different version of code and they are not interchangeable.

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 20

4.3. Relay Outputs (FRC only)

The Relay ports on the FRC Robot Controller are all controlled by PICmicro® software. The Relay
outputs provide Full Forward, Full Reverse, and OFF control for motors and other devices when
connected with a Spike Relay. Each relay port has 2 digital outputs. Refer to the appropriate Robot
Controller Reference Manual for details on the number and location of the Relay Outputs.

Example (using the default software): Press the Trigger button on the Port 1 Joystick to put a Spike
Relay connected to RLY1 in the Forward position. This would cause a motor connected to this relay to
turn at its maximum speed. Press the Top button on the Port 1 Joystick to put the Spike in Reverse
position, thereby reversing the motor. The relays in the example below are limited by limit switches
connected to Digital Inputs 1 and 2.

Relay Digital Outputs: The relay outputs have aliases defined in the ifi_aliases.h file. Here is an
example of how to use them.

/*--------- Example Aliases for Robot Controller relay outputs ----------------------------*/
#define relay1_fwd LATDbits.LATD0
#define relay1_rev LATEbits.LATE0
#define relay2_fwd LATDbits.LATD1
#define relay2_rev LATEbits.LATE1

/*--------- Example usage of relay ports --*/
/* When the switch on rc_dig_in01 is closed, the value will be 0. */
/* This will make relay1_fwd also be 0, no matter what the value of p1_sw_trig is. */
 relay1_fwd = p1_sw_trig & rc_dig_in01;
 relay1_rev = p1_sw_top & rc_dig_in02;

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 21

4.4. Solenoid Digital Outputs (Mini-RC only)

The solenoid outputs on the Mini Robot Controller are essentially treated as digital outputs in the
software. A high, or 1, will energize (turn on) the solenoids, and a low, or 0, will shut them off.

Example (using the default software): Push the joystick corresponding to R/C PWM IN 3 forward past
the programmed threshold of 160 to energize solenoid 1. Pull it backwards past 95 to energize solenoid
2. In the neutral position both solenoids will be off.

Solenoid Digital Outputs: The solenoid outputs have aliases defined in the ifi_aliases.h file. Here is an
example of how to use them.

/*--------- Example Aliases for MINI Robot Controller solenoid outputs --------------------*/
#define solenoid1 LATDbits.LATD0
#define solenoid2 LATDbits.LATD1
#define solenoid3 LATDbits.LATD2
#define solenoid4 LATDbits.LATD3
#define solenoid5 LATDbits.LATD4
#define solenoid6 LATDbits.LATD5

/*---------- R/C PWM INPUTs toggle solenoids -----------------------------*/

 if (PWM_in3 < 95) /* PWM_in3 forward (typically) */
 {
 solenoid1 = 1; /* turns on Solenoid 1 */
 solenoid2 = 0; /* turns off Solenoid 2 */
 }
 else if (PWM_in3 > 160) /* PWM_in3 reverse (typically) */
 {
 solenoid1 = 0; /* turns off Solenoid 1 */
 solenoid2 = 1; /* turns on Solenoid 2 */
 }
 else /* PWM_in3 neutral band */
 {
 solenoid1 = 0; /* turns off Solenoid 1 */
 solenoid2 = 0; /* turns off Solenoid 2 */
 }

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 22

5. Downloading User Code to the Robot Controller

5.1. Downloading Steps

1. Compile a valid program in MPLAB® IDE by selecting “Make” from the “Project” menu. This
will generate a .hex file with the same name as the project name. You may also use the
xxx_Default.hex file which has been pre-compiled to restore the default functionality.

2. Power ON the Robot Controller.
3. Connect a DB9 Male-to-Female Pin-to-Pin cable (maximum length 6 ft.) from the PROGRAM

port on the Robot Controller to PC’s serial port.
4. Run the IFI Loader application from Start -> Programs -> IFI_Loader -> IFI_Loader.
5. Right click and select the appropriate COM port in the lower right corner of the IFI Loader

window.
6. Click the “Browse” button and select the desired .hex file which you compiled from within

MPLAB® IDE.
7. (Mini RC only) Briefly press the “PROG” button on the Robot until the Program State LED

becomes solid orange. Now the Mini RC is in Program Download mode. (On some PCs, this
step must also be performed for the FRC Robot Controller by pressing the “Download” button.)

8. Click the “DOWNLOAD” button in IFI Loader. The Program State LED will blink orange.
9. When the download is complete the Robot Controller will automatically reset. There is no need

to power cycle it. If the program is good, the Program State LED will blink green. A terminal
window will automatically open within IFI Loader where any text output from the Robot
Controller will be displayed.

Note: Before the new User program will start executing, an FRC Robot Controller must have a Valid
RX (link) to an OI or the RC must be in Autonomous Mode.

5.2. PROGRAM STATE LED

Depending on the status of the User processor, the PROGRAM STATE LED will be green, orange, or
red, and blink or stay on solid.

After programming the Robot Controller you should see the PROGRAM STATE LED flashing green.
This LED indicates that the new program is running. For the FRC system you must also be linked to an
Operator Interface or else this LED will be solid green and the program will not be running.

The PROGRAM STATE LED will be a solid orange if it is waiting for new user code to be downloaded.
This will occur if the PROG button is briefly pressed on the Robot Controller. Pressing this button is
only necessary for the Mini Robot Controller. It may also be necessary for the FRC Robot Controller on
some PCs. If you are unable to download to the FRC Robot Controller, you may need to press the
PROGRAM button to change the LED to orange.

While a new program is being downloaded, the PROGRAM STATE LED will blink orange.
The PROGRAM STATE LED will be red if the Master processor is unable to communicate with the
User processor. This can occur if something in the User Code interferes with the inter-processor
communication by writing to a reserved area.

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 23

6. Additional Programming Techniques

If you leave the serial cable connected to your Robot Controller after programming it, the routines in
sections 6.1 and 6.2 can be used to print data to your computer screen. You can display the data in any
serial communications terminal application. IFI Loader has a Terminal Window which can be used for
this purpose, or you may use the application HyperTerminal. HyperTerminal is located in Start-
>Programs->Accessories->Communications. Settings for HyperTerminal are: Bits per second: 115200,
Data bits: 8, Parity: None, Stop bits: 1, Flow control: None. You might also want to check “Append line
feeds to incoming line ends” in “File->Properties->Settings->ASCII Setup…”.

These commands provide a convenient way for your PICmicro® program to send data to the PC screen
while running. Some possible uses include debugging programs by showing you the value of a variable
or expression, or by indicating what portion of a program is currently executing. Once your program
has been debugged, however, you should remove all such serial text output commands so that your code
will run as fast as possible in your robot. Note that printing text using these commands is relatively
slow, and while this is happening no other program execution is occurring. Remember that code which
takes too long to execute can cause your Robot Controller to be reset by the Master processor.

6.1. The printf() Command

The most common method to print text output to a screen in C is the printf() command. While this
command is not included in the Microchip C library, IFI has implemented a limited model of printf in
the printf_lib.c file. Please examine this file to learn the limitations of the IFI implementation as
well as to see examples of how to create your own custom output modules. The default code has the
following example included to get you started.

printf() Example: The following example demonstrates the use of a printf() command to display the decimal
values of PWM OUT 7 and 8 to the computer screen.

 printf("PWM07 = %d, PWM08 = %d\n",(int)pwm07,(int)pwm08); /* printf example */

Notice that the values displayed (pwm07 and pwm08) are of type unsigned char and must be typecast as int to
work with this command.

Note that the printf libraries use a significant amount of program memory space in the User processor.
If the size of your program begins to bump against the 32kb ceiling of the 18F8520, you can shave off
approximately 4kb from your program by removing the printf_lib.c and printf_lib.h files
from your project and deleting any printf calls from your program.

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 24

6.2. Other Serial Debug Statements

While the printf() function is a standard C library, its use requires more processing power than the
following utilities. The commands which follow are faster methods of printing data to a PC terminal
screen, although they do not allow the flexibility and formatting of a printf statement. These commands
are contained in the file ifi_utilities.h and can be useful for debugging your programs when
execution speed is important. You may also create your own custom serial output functions using these
as models.

PrintByte Example: The following example demonstrates using the PrintByte command to print bytes of
data in hexadecimal format to the computer screen.

/*--------- Somewhere in the Main Loop ---*/

PrintByte(0xC4); /* Print a hard-coded value. */
PrintByte(pwm01); /* Print a variable value. */

After you add these lines somewhere in the main loop, and after downloading, the IFI Loader will open a
Terminal Window on your PC screen and wait for data from the Robot Controller. You should see “C4” and “7F”
repeating, each on their own lines. “7F” should vary depending on the value of pwm01, an output variable.
These lines will repeat every loop of the code. Note that if you close the Terminal Window, your program keeps
executing, but you can't see the debug data anymore. You can reopen Terminal Window from the Options menu.
Optionally, you can use HyperTerminal to view the data.

PrintWord Example: This function will print a word of data, or two bytes, in hexadecimal format.

/*--------- Somewhere in the Main Loop ---*/

PrintWord(0xC4A1); /* Print a hard-coded value. */

You should see “C4A1” printed on your screen. A carriage return is automatically added.

PrintString Example: You can also print text strings using this function.

/*--------- Somewhere in the Main Loop ---*/
 PrintString((unsigned char *) "ERROR1\r"); /* Print a text string. */

This example will display “ERROR1”. The “\r” performs a carriage return. To use this function, simply replace
“ERROR1” with the text you would like to print.

DisplayBufr Example: This function will display all 26 bytes of either the TXDATA or the RXDATA
buffer. In this manner you can snoop on the data being sent to or received from the Master processor. It is a good
candidate for customization so that you can display your own long buffers.

/*--------- Somewhere in the Main Loop ---*/
 DisplayBufr(&rxdata); /* Print the 26 bytes received from the Master processor. */
 DisplayBufr(&txdata); /* Print the 26 bytes sent to the Master processor. */

This example will dump all 26 received bytes on one line before inserting a carriage return and then printing the
26 transmitted bytes with another carriage return. See what happens if you use this and move the joysticks on
your control system!

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 25

6.3. Robot Feedback and User Mode (FRC only)

The FRC Robot Controller has the ability to send data back to the Operator Interface. The Robot
Controller can send 11 bits every loop of the code. The data is available on the Operator Interface in
three ways: 1) On the 11 Robot Feedback LEDs, 2) on the multi-segment display when in user mode,
and 3) on a PC connected to the Dashboard Port. See the rc_mode_byte section (page 26) for details on
writing code that can display numbers on the multi-segment display.

The Robot Feedback bits are passed from the User processor to the Master processor in the txdata
packet. The Master processor then sends the data to the Operator interface via the Radio Modems. You
can change the Feedback bits one at a time as in the example below.

Robot Feedback Example: The Default Code assigns aliases to the bits which control the Robot Feedback LEDs
on the Operator Interface. These aliases are defined in the ifi_aliases.h file. The user can change these
aliases.

/*---------- Example aliases for the ROBOT FEEDBACK LEDs ----------------------------------*/
#define pwm1_green txdata.LED_byte1.bitselect.bit0
#define pwm1_red txdata.LED_byte1.bitselect.bit1
#define pwm2_green txdata.LED_byte1.bitselect.bit2
#define pwm2_red txdata.LED_byte1.bitselect.bit3

The values of these LEDs (ON or OFF) are set in the Default Code in the ifi_default.c file. Here is an excerpt.

 if (p1_y >= 0 && p1_y <= 56)
 { /*Joystick is in full reverse position*/
 pwm1_green = 0; /*Turn PWM1 green LED - OFF */
 pwm1_red = 1; /*Turn PWM1 red LED - ON */
 }

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 26

6.4. rc_mode_byte – Disabled, Autonomous, and User Modes (FRC only)

The rc_mode_byte is a byte accessible through the GetData command. The bits representing
Disabled Mode, Autonomous Mode, and User Mode are all available in this byte. The Default Code
already contains all the code needed to use these modes.

rc_mode_byte Aliases: The following three aliases are declared at the end of the ifi_aliases.h file.

#define user_display_mode rxdata.rc_mode_byte.mode.user_display
#define autonomous_mode rxdata.rc_mode_byte.mode.autonomous
#define disabled_mode rxdata.rc_mode_byte.mode.disabled

Disabled Mode
Bit 7 of rc_mode_byte (aliased as disabled_mode) indicates the status of the Robot Controller’s
outputs, either Enabled or Disabled. This indicates the starting and stopping of rounds at FIRST
competitions. Disabled Mode is indicated by a solid "Disabled" LED on the Operator Interface and a
red “RC Mode” LED on the Robot Controller. When in Disabled Mode (before and after a match), all
PWM and Relay outputs are disabled, but program execution continues.

disabled_mode = 0 for outputs enabled, 1 for outputs disabled.

Autonomous Mode
Bit 6 of rc_mode_byte (aliased as autonomous_mode) indicates the status of the Autonomous
Mode, either Autonomous or Normal. This indicates when the robot must run on its own programming
alone, with no user input from the Operator Interface. When in Autonomous Mode, all OI analog inputs
are read as 127 and all OI switch inputs are read as 0 (zero). Autonomous Mode is indicated by a
flashing "Disabled" LED on the OI and a flashing yellow “RC Mode” LED on the Robot Controller.

autonomous_mode = 1 for Autonomous, 0 for Normal operation.

Autonomous Mode can also be turned ON by setting the RC to Team 0 (zero) by tethering to an OI with
its team number set to 0. Note that if disabled_mode = 0 (Disabled), then Autonomous Mode is
also disabled.

Autonomous _Mode Example: For code you wish to have run in Autonomous mode, you must edit the
User_Autonomous_Code() routine in the user_routines_fast.c file. Here is an excerpt from main.c
which calls the autonomous code:
 if (autonomous_mode)
 {
 User_Autonomous_Code(); /* You edit this in user_routines_fast.c */
 }

User Mode
Bit 5 of rc_mode_byte (aliased as user_display_mode) indicates when the user selects the
"User Mode" on the OI. In "User Mode", user_display_mode is set to 1. When the user selects
channel, team number, or voltage, user_display_mode is set to 0. When in "User Mode", Robot
Feedback LEDs are turned off and the value stored in txdata.LED_byte1.data is displayed on the
multi-segment display on the Operator Interface. By default this is set to the value of the backup
battery. "User Mode" is identified by the letter “u” in the left digit of the display on the Operator
Interface.

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 27

User Mode Example: This example shows the Default Code that changes the data sent to the Operator Interface
when the user sets the Operator Interface to User Mode.

 if (user_display_mode == 0) /* User Mode is Off, control Robot Feedback LEDs */
 {
 Relay1_green = relay1_fwd; /* LED is ON when Relay 1 is FWD */
 Relay1_red = relay1_rev; /* LED is ON when Relay 1 is REV */ ...
 }
 else /* User Mode is On, Robot Feedback LEDs are off */
 {
 User_Mode_byte = backup_voltage*10; /* Change to a value in which you are interested. */
 }

6.5. Simulator Mode in MPLAB®

For the experienced user, it is possible to simulate the code you write on the computer without having to
actually download it to your Robot Controller. This is can be very useful for debugging purposes. Here
is how you set it up with your project file open in MPLAB®:

1. First you must select “Debugger -> Select Tool -> MPLAB® SIM” from the menu in MPLAB®.

- Notice the new buttons which appear in the toolbar at the top of MPLAB®.
2. Next you must select “Project -> Build Options… -> Project” from the menu.
3. Click on the “MPLAB® C18” tab.
4. In the “Macro Definitions” area, click the “Add…” button.
5. Type “_SIMULATOR” in the popup box and click “OK”.
6. Click “OK” in the “Build Options” window.

Now after you re-compile your code (Project -> Build All), you can use the new Debug buttons in the
toolbar to step through your code, while keeping an eye on variables and registers using selections from
the “View” menu. You can also dynamically change their values with these tools to simulate your
robot’s actual operation.

For example, right-click on a line you wish to stop at and select “Set Breakpoint”. Now click the “Run”
button on the toolbar. The code will execute and if it reaches your breakpoint it will pause. You can
then select “Watch” from the “View” menu and select a variable you are interested in. If you double-
click on its value you will be able to change it by typing. Then you can continue the program execution
by clicking the “Run” button again, or with the “Step Into” or “Step Over” buttons. You can also set
multiple breakpoints at different points in your code. Using these techniques you can follow your
program’s flow and logic, as well as testing it with different stimuli before you ever download it to the
real Robot Controller. Be aware that all inputs and outputs, including the entire input stream from the
Master processor will be set to zero upon startup in simulator mode.

For more instructions on simulator mode, please refer to the MPLAB® C18 C Compiler Getting Started
document (Section 3.3.7 on page 29).

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 28

7. PICmicro® Commands

Not all features of the 18F8520 PICmicro® can be used by the user who is writing custom code for the
Innovation First Control System. Certain registers are reserved because they are used to allow the User
processor to function within the embedded system. Modification of these registers may result in
improper operation or in the Robot Controller not functioning at all.

The following list contains the most common and useful features of the 18F8520 which are accessible to
the user when programming the Robot Controller:

- all timer modules
- all CCP modules
- all analog modules (ADC, comparators, etc.)
- all EEPROM memory
- most low priority interrupt sources
- USART1 (PROGRAM port, RS-232)
- USART2 (TTL Serial Port)

Refer to the file ifi_picdefs.h to find out which registers and bits are reserved by the system, or
are not available to the user. It is not necessarily comprehensive, since many registers have multiple
functions, some of which may be allowed, while others are not. For a complete pin list of the usable
pins which you can access in your code, please refer to the appropriate Robot Controller user guide.

If your Robot Controller ceases functioning after a program change, you should revert back to the last
known working version and then incrementally add back in the new code until you find what caused the
problems. It is good programming practice to keep an archive of old code so that you can do this. Many
programmers use some form of version control and there are lots of tools for software configuration
management to choose from.

8. References

The following useful documents can be found at Microchip’s web site (http://www.microchip.com):

PIC18FXX20 Data Sheet Document #: DS39609A
MPLAB® IDE v6.xx Quick Start Guide Document #: DS51281C
MPLAB® C18 C Compiler Getting Started Document #: DS51295B
MPLAB® C18 C Compiler User’s Guide Document #: DS51288B
MPLAB® C18 C Compiler Libraries Document #: DS51297B

Information specific to each respective Robot Controller model can be found in these documents from
Innovation First’s web site (http://www.innovationfirst.com):

Mini 2004 Robot Controller Reference Guide
FRC 2004 Robot Controller Reference Guide

An authoritative C programming book:

Kernighan, B. W., & Ritchie, D. M. (1988). The C Programming Language (2nd Edition).
 Prentice Hall PTR. ISBN: 0131103628.

 Innovation First, Inc. 2004 Programming Reference Guide
 4.12.2004 www.InnovationFirst.com Page 29

9. Appendix A: Document Version History

Date Code Changes

2004-04-12 p.26 Corrected, changed competition_mode to disabled_mode bit.

2003-10-29 Initial document release.

"Innovation First" is a mark of Innovation First, Inc. Copyright © 2002-2004, Innovation First, Inc. All Rights Reserved.

All other product names/marks of others are the property of their respective owners.

