Getting Started with Java for
FRC

Worecester Polytechnic Institute Robotics Resource Center

Brad Miller, Ken Streeter, Beth Finn, Jerry Morrison, Dan Jones, Ryan
O’Meara, Derek White, Stephanie Hoag, Eric Arseneau

Rev 3.0 January 6, 2011

Table of Contents

Welcome to Robot Programming with Java ... 3
Installing Java and TOOIS......coimemsmsssssss s AR 4
REQUITEA SOfEWATE ...ttt ees st ss s sesssess bbb R RSB R REREEeResesRenn 4
Installing the NetBeans Plugins: Sun SPOT Java SDK for FRC and WPILIDcoenennersseseeesseesessessseesens 4
Installing the plugins from the UPAAte SIte ... s 4
Installing Sun SPOT Java SDK for FRC without INtEINEt ACCESS......wmmememersersesssesssesssessessssssssssssssssssssssssssessees 5
Configuring Your NetBeans Installation fOr YOUT tEAIM ... sesssessssssesssssssssssssssssesss 5
Installing the 2011 cRIO Imaging Tool on your development COMPULET........ccoueremmemseesersessssesseesssesssesssesssessees 6
Installing the 2010 cRIO Image for Java 0n YOUI CRIOcoereeseesesseessssssssssessesssses 6
Creating @ RODOE PrOJECt ... s s e ssasas s e s e sasas s 7
U (6 U0 o T U=l o) o] =T o PSP 8
Downloading and running the robot PrOgram ... sssssssssesssessses 8
Debugging the rODOL PIrOGTAIM ... eesees s s s ss e s s bbb 9
Creating a RODOE PrOgraml......oicssmmssisssssssssssssssssss s ssssssss s ssssss s s e snanas 11
WPI RoboticSs Library CONVENTIONScouummsmssssmmssasssssssssssnsss 15
Class, Method, and Variable NamMING........eissessessans 15
Constructors with S10tS and ChaNNELS ... 15
Sharing iINPULS DEEWEEIN ODJECES ... sees s s s ss s s bbb 15
BUilt-in RODOT CLASSES .cuvveieierarcmiismsssssssssssssssssssssssss s s sssas s ss s 16
Y 1000 0] (53 2] 070 Aol - 13PTSR 17
JEEIAtIVERODOT ClASS...uuieuererueessissseeseeseesssesssess s sssess e ss bbb 17
RODOTBASE ClaSS...cuuiuuirueeseeseersesssesssesssessssssssesssess s ssssesssessse s b s s8££ R8RSR AR 18
WAtChAOZ LIMET CLASS ..ouvevueeuieseeeseeseessesssess s ses s ss s s s s s bR R SRR 20
Advanced Programming TOPICS ...ccuummmmmmsmsmsmsmssssssmssessssssssssssssssesssssssasassssenes 21
100 4 1610 D i /=) 0 o} 70 21
Using SUbVersion With NETBEANS ... s sess s ss s ssssssesssesssess s s s ssssssans 21
Getting the WPILID SOUICE COUE ... mrrieiieseesersssesssesssessseesssssssesssesssessssssssesssssssssssessssssssssssasssessssssssssssesssessssssssssssesssssssssssns 21
Replacing WPI Robotics LiDIrary Partseesesessssssssssssssssessnes Error! Bookmark not defined.
4L 1=) g D) PPN Error! Bookmark not defined.
Differences DetWeen C++ AN JAVA ... niseessessesssssssses e ssss bbb st 21
LaANGUAZE AIffEIEICESeureeeruerueesseeseceeess s ss e sssses s s bbb R R 21
WPILID QIffEIEIICES w.cuvevreeneesrieseesseessesssesssesssesssesssesssesssess s s ss s s s EsES RS ERER R 22
QUL VETSION Of JAVA.uuiutitrieriesreessesseessssssssesssssssssssssessssssssssessssssessssssssssessesssessssssssssssssssssssssssessssssessssssssasessnsasessnsssssansssnsssssansssssssssnsans 22

Welcome to Robot Programming with Java
Starting with the 2010 competition season teams have the option to write Java programs for their robots,
including a full suite of tools to ease program development and debugging.

The tools include:

* The NetBeans Integrated Development Environment (IDE) which is available for download from
http://www.netbeans.org. You can install the components needed for robot development by
simply adding an update site to NetBeans and installing a plugin. (Eclipse integration is coming,
for another IDE choice.)

* Sun SPOT Java SDK for FRC includes the Java virtual machine and tools necessary to compile,
deploy, and run Java code on the cRIO.

* The WPILib Application Programming Interface (API) for Java provides a programming interface
to the cRIO. Itis almost identical to the C++ interface. Converting existing C++ code to Java is
simple and straightforward, and will let you reuse code developed in 2009 or 2010.

The development tools run on most common platforms: Windows, Mac OSX, and Linux.

The complete source code for everything including the NetBeans IDE, Sun SPOT Java SDK for FRC, and the
WPILib API is available to teams wishing to look at any aspect of the implementation.

Installing Java and Tools

Required Software
In order to setup your machine to program in Java, the following software components are required:

* Java SE Development Kit (JDK) version 6.
* NetBeans IDE version 6.7 or later.

You can use other IDEs if desired but the focus for this document is NetBeans.
* SunSPOT Java SDK for FRC which includes WPILib.

All these components can be installed on your platform of choice. Each platform requires slightly
different installation procedures.

Install the Java tools in three steps, downloading the components from the Internet for each step:

1. Install the Java SE Development Kit (JDK) version 6 avaiable from http://java.sun.com. Your
development system may already have the JDK installed, for example on Mac OS X.

2. Install NetBeans version 6.7 or later. This is available from http://netbeans.org/downloads.

3. Add the FRC plugins to NetBeans. These plugins can be downloaded from the WPILib project on
http://firstforge.wpi.edu or installed via the NetBeans built in downloader as described in the
following sections of this document.

Note: 7he details of each step vary by operating system and browser.
On 64-bit Windows the SunSPOT tools still need a 32-bit JOK so download a JOK for platform
“Windows” not “Windows x64.” You can install the JDK in C:|Javal32-bit| even if you also have a 64-
bit JOK in, say, C:\Javal. Give this SDK location to the NetBeans installer wizard.

Besides the tools for Java programming you’ll also need:

* The FRC cRIO Imaging Tool to format/initialize your cRIO for Java programming. This tool is
currently only released and supported for Windows.

* Optionally the FRC Driver Station software to control your robot, also only supported on
Windows.

These tools are available online as an update to the installed LabVIEW platform installer DVD that is
included with the kit of parts. You can find these updates on the FIRST web site team updates page:

http://usfirst.org/roboticsprograms/frc/content.aspx?id=450.

Installing the NetBeans Plugins: Sun SPOT Java SDK for FRC and WPILib

The FRC Plugins add the FRC specific components to your standard NetBeans installation. The NetBeans
plugins contain everything needed to extend your Java development environment to program your cRIO.
The FRC plugins enable NetBeans to directly download and debug code on the NI cRIO controller. The
plugins include project types and sample programs to help you get started developing robot programs.

There are two ways of installing the plugins:

1. From the FRC NetBeans update site. In this case the URL of the update site is entered into
NetBeans and the plugins are installed automatically and as updates are published, you will
automatically be prompted to install them provided your computer is connected to the Internet.

2. From the FIRSTForge WPILib project site. In this case you download a zip file that contains the
plugins, unzip it, and enter the location of the unzipped files into the NetBeans plugin manager. In
this case, you will be responsible for manually installing updates as they become available.

Installing the plugins from the update site
You get the Sun SPOT Java SDK for FRC as a NetBeans plug-in from a NetBeans update site.

Note: The initial release of the plugins will not be available from the update site until after the 2077

Kickoff since the release is encrypted until then and NetBeans has no provision for decrypting

extensions installed through the plug-in mechanism.

To install the plugins from the update site follow these steps (see below for development computers that
are not connected to the Internet):

1.

2.
3.
4

Run NetBeans using the Start menu or the desktop shortcut.

Select “Tools” then “Plugins” from the main menu in NetBeans.

Select the “Settings” tab, and then press the “Add” button to add a new Update Center.

For the name, enter “FRC Java” and for the URL enter:
http://firstwpi.edu/FRC/java/netbeans/update/updates.xml

and press the OK button.

Select the “Available Plugins” tab, select all the plugins in the “FRC Java” category, and click the

“Install” button.

Advance by clicking the “Next” button, accept the agreements, and install the plugins. Ignore the

“Validation Warning” dialog where it informs you that “The following plugins are not signed:” and

press the “Continue” button.

In the “Restart NetBeans IDE to complete the installation” window, use the “Restart IDE Now”

option and click the “Finish” button.

After restarting NetBeans you should notice the F/RS7 logo button in the toolbar. This confirms

that the module has been installed properly.

NetBeans will periodically check for new updates and offer to install them when they become available.
Be sure to keep your installation current to get the latest bug fixes and improvements.

Installing Sun SPOT Java SDK for FRC without Internet Access
NetBeans is designed to automatically update its plugins on computers that are connected to the Internet.
If your development system does not have Internet access and then follow this procedure:

1.

O ONUE W

Using a computer that is connected to the Internet open a browser and enter the FIRSTForge
WPILib project site: http://firstforge.wpi.edu/sf/projects /wpilib. From there select the File
Releases area.

Download the zip file for the most recent WPILib Java update for the 2011 season.

Unzip the file and copy the resultant directory to a USB drive. You should see 5 .NBM files.
Connect the USB drive that has the downloaded files to your development computer.

Run NetBeans using the Start menu or the desktop shortcut.

Select “Tools” then “Plugins” from the main menu in NetBeans.

Select the “Downloaded” tab and press “Add Plugins...”

Enter then location of the 5 .nbm files just downloaded.

Select “Install” to install the plugins into your NetBeans installation.

You'll need to repeat these steps when new updates are available. Be sure to watch the FIRST forums for
announcements of new versions of the tools. Be sure to keep your installation current to get the latest
bug fixes and improvements.

Configuring Your NetBeans Installation for your team
The plugins are installed. A little configuration is required:

1.
2.

Select “NetBeans” menu and choose the “Preferences” menu options from the NetBeans menu bar.
Select the “Miscellaneous” tab. Then select the “FRC Configuration” tab and enter your team
number into the text field. Then press OK.

Installing the 2011 cRIO Imaging Tool on your development computer

Before you can download and run code on your cRIO, you must install the right operating system files
onto it. To do that, you get the 2011 cRIO Imaging tool. This is available from the LabVIEW installation
DVD and the LabVIEW tools updates. You can find those tools on the FIRST web site here:
http://usfirst.org/roboticsprograms/frc/content.aspx?id=450.

Installing the 2010 cRIO Image for Java on your cRIO

Now that you have the cRIO Imaging tool, follow the 2011 instructions for using it to install the new
image onto your cRIO.

Be sure to:

* Get the latest available software image. It is supplied as part of the Java Netbeans plugins.
* Select Java as the image type.
* Check the “Reformat” box in the imaging tool to ensure the image is installed afresh.
Note: There is one cRIO image per language and this is different than prior years. The image comes from
the Java NetBeans plugins installation, so you won’t be able to update the cR/O image until you’ve
installed the plugins and started NetBeans at least once.

Creating a Robot Project
To create your first Java project, perform these steps:

1. Right click in the projects pane on the left side of NetBeans, and then select “New Project.”

ro New Project g

Steps Choose Project
1. Choose Project Categories: Projects:
7R or (2 FRC Java £ FRCApplicationProject
) Java £ IterativeRobotTemplateProject

_____) Maven &> SimpleRobotTemplateProject

-3 Samples

Description:

Sample robot program framework that can be used to write your own
code.

< Back Finish Cancel H Help

2. Select “FRC Java” and “SimpleRobot Template Project,” then click “Next.”

3. Type a project name and a class name. The named class will contain your robot program including its methods
for the autonomous and operator control periods. In this example, we choose “SampleProject” for the project

name and “Team190Robot” for the class name. Then click “Finish.”

[J New Project u

Steps Name and Location

1. Choose Project
2. Name and Location Project Name: |SampleProject

Project Location: YC:\Users\brad\Domments\NetBeansProjeds '

Project Folder: VC:\UsersVJrad\DocumenisWetBeansProjeds\SampIeProject
Project Package: vedu.wpi.ﬁrst.wpilibj.hemplabes

Robot Class: Team130Robot|

i

<Back Next> || Fnish || cancel || Hep |

4. Close the output.xml window. Look in the project tab for the files generated by the New Project wizard:

EJ% SampleProject

5 E*"‘ﬁ src
5 ErEgj edu.wpi. first.wpilibj. templates
: ... | & @Team 190Robot.java
a-f5) build. xml

.. ¥ \WDTI ik

5. The source file “Team190Robot.java” has the same name as the class, “T'eam190Robot”. Java requires the class

name to match the file name. The generated file looks like this (plus comments left out for brevity):

package edu.wpi.first.wpilibj.templates;
import edu.wpi.first.wpilibj.SimpleRobot;

public class Teaml90Robot extends SimpleRobot {

public void autonomous() {

}

public void operatorControl() {
}

}

Notice that the wizard generated empty autonomous () and operatorControl () methods. The next step is
to fill these methods in with the code you want to run for the autonomous and tele-operated field states,
respectively. The simpleRobot base class will automatically call these methods at the appropriate times.

Building the project

Be sure that the project you want to build is designated as the NetBeans “main project” by right clicking
on the project in the Project pane and selecting “Set main project.” The main project name will appear in
bold text. Build the project by selecting the “Build main project” command in the Run menu or use the
F11 shortcut. You'll see any build errors in the lower window under the source code.

Downloading and running the robot program
You can download the program to the robot by using the “Run main project” arrow in the toolbar or the
“Run main project” item in the Run menu.

tor Run Debug Profile Team Tools Window Help

es

T8 DB G

&| Team190Robot.java x|

BB-B- AR5 PR |ae oL

package edu.wpi.first.wpilibj.templates;
[£] import edu.wpi.first.wpilibj.SimpleRobot;
public class Teaml90Robot extends SimpleRobkot {

@[] public void auntonomous () {

@[] public void operatorControl () {

The Run command will do these steps:

1.

Connect to the cRIO and verify that the correct version of the FRC Java environment is loaded. If
not, it will be updated before copying your robot program.

Copy your robot program to the cRIO and set it up to run on reboot.

Reboot the cRIO.

Wait for the cRIO to finish rebooting, and then connect to it so that console messages will appear
in the NetBeans console window.

Be sure to enable the robot in either Autonomous or Tele-op mode using the driver station to see the
program run.

Debugging the robot program
Debugging the robot program is slightly more complex. The program has to start, and then you must
attach the NetBeans debugger to the running program. The procedure is:

l.

Make sure the project you want to debug is the main project (it will be bold in the Project pane)

File Edit View Navigate Source Refactor

FTEES D@

‘Proj.. 4 x:Files Services

A4 RobotTemplate

©-i4 SampleProject

- EB@ src
=) EE] edu.wpi.first.wpilibj. templates
: -|&| Team190Robot.java

- @8 buid.xml

-2 WPILibJ

2. Place a breakpoint that you expect to hit by clicking in the gray area to the left of the desired
source code line. You can set more breakpoints, too.

L .
puklic class RobotTemplate extends SimpleRobot {
RobotDrive drive = new RobotDrive(l, 2);
E *
a4 x * This function i3 called once each time the robot enters a
v . =
@ public void auntonomous () {
getWatchdog () .setEnabled (true) ;
(| I getWatchdog () .setExpiration(0.5);
drive.drive (1, 0):;
Timer.delay(2):
drive.drive (0, 0):
- }

3. Click on the debug button in the toolbar.

Profile Tam Tools Winf

T
90Robot.java x @‘]@RobotTem abe.java * x

=] lmm m meme e n | as szl s — |

4. Wait until the output window displays “Waiting for connection from debugger on serversocket://:2900. This is
when the program will try to connect to the debugger.

5. Click on the down-arrow button adjacent to the debug toolbar icon and select “Attach debugger.”

low Help

>5

TAMHIQ&H Q.QI]

6. Make sure the debugger settings are as shown then hit the OK button:

Picture goes here

The program will start running then pause at the first breakpoint it hits. You can then examine variables and set more

breakpoints.

Creating a Robot Program
Consider a very simple robot program that has these characteristics:

Mode Description

Autonomous Drives in a square pattern by driving at half speed for 2
period seconds to make each side then turn 90 degrees. Do this 4
times.

Operator Control Uses two joysticks to provide tank steering for the robot.
period

Robot specifications:

Method Port Location

Left drive motor PWM port 1

Right drive motor PWM port 2

Joystick Driver station joystick ports 1 and 2

Starting with the simple template for a robot program:

package edu.wpi.first.wpilibj.templates;

import edu.wpi.first.wpilibj.RobotDrive;
import edu.wpi.first.wpilibj.SimpleRobot;
import edu.wpi.first.wpilibj.Timer;

public class RobotTemplate extends SimpleRobot {

public void autonomous() {

}

public void operatorControl() {

}
}

Now define a robot drive object for motors in ports 1 and 2 and joystick objects for joystick ports 1 and 2:

package edu.wpi.first.wpilibj.templates;

import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.RobotDrive;
import edu.wpi.first.wpilibj.SimpleRobot;

public class RobotTemplate extends SimpleRobot {

RobotDrive drive = new RobotDrive(l, 2);
Joystick leftStick = new Joystick(1l);
Joystick rightStick = new Joystick(2);

public void autonomous() {

}

public void operatorControl() {

}
}

To simplify this example, we'll disable the watchdog timer. (The watchdog is a safety feature in the WPI
Robotics Library that helps keep your robot from running away out of control if the program
malfunctions. You don’t really want to disable it. If necessary, give it a longish timeout.) In general you

11

should leave the watchdog enabled but for the sake of this first example, we’ll disable it. This can be done
in a constructor for your RobotDemo Object:

public RobotDemo ()

{
}

Now write the autonomous part of the program to drive in a square:

drive.setSafetyEnabled (false);

public void autonomous() {
for (int i = 0; i < 4; i++) {
drive.drive (0.5, 0.0); // drive 50% forward speed with 0% turn

Timer.delay(2.0); // wait 2 seconds
drive.drive (0.0, 0.75); // drive 0% forward with 75% turn
Timer.delay(0.75); // wait for the 90 degree turn to complete
}
drive.drive (0.0, 0.0); // drive 0% forward with 0% turn (stop)

}

Now write the operator control part of the program:

public void operatorControl() {
while (isOperatorControl() && isEnabled()) // loop during enabled teleop mode

{
drive.tankDrive(leftStick, rightStick); // drive with the joysticks

Timer.delay(0.005);

}

This applies joystick control values to the drive motors, every 5 milliseconds.

12

Putting it all together we get this very short program that accomplishes an autonomous task and
provides operator control tank steering:

package edu.wpi.first.wpilibj.templates;

import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.RobotDrive;
import edu.wpi.first.wpilibj.SimpleRobot;
import edu.wpi.first.wpilibj.Timer;

public class RobotTemplate extends SimpleRobot {
RobotDrive drive = new RobotDrive(l, 2);

Joystick leftStick = new Joystick(1l);
Joystick rightStick = new Joystick(2);

public void autonomous() {
for (int i = 0; i < 4; i++) {
drive.drive (0.5, 0.0); // drive 50% forward speed with 0% turn
Timer.delay(2.0); // wait 2 seconds
drive.drive (0.0, 0.75); // drive 0% forward speed with 75% turn
Timer.delay(0.75); // wait for the 90 degree turn to complete
}
drive.drive(0.0, 0.0); // drive 0% forward speed with 0% turn (stop)
}
public void operatorControl() {
while (isOperatorControl() && isEnabled()) // loop during enabled teleop mode
{
drive.tankDrive(leftStick, rightStick); // drive with the joysticks

Timer.delay(0.005);

}

Some details:

* Inthis example drive, leftStick, and rightStick are member objects of the RobotDemo class.
* Thedrive.drive () method takes two parameters, a speed and a turn rate. See the documentation
about the robotDrive object for details on how the speed and direction parameters work.

Using objects

The WPI Robotics Library accesses all sensors, motors, driver station elements, and more through
objects. Most objects correspond to the physical things on your robot like sensors. Objects have the code
and the data needed to operate that physical thing. Let’s look at a gyro. The operations (or methods) you
can perform on a gyro are:

* Create the gyro object - this sets up gyro communications and calibrates the gyro
* Configure the gyro parameters, i.e. its sensitivity

* Getthe current heading, or angle, from the gyro

* Reset the current heading to zero

* Delete the gyro object when you're done using it

Creating a gyro object is done like this:

Gyro robotHeadingGyro = new Gyro(1l);

The variable robotHeadingGyro refers to a Gyro object that operates a gyro module connected to analog
port 1. That’s all you have to do to make an instance of a Gyro object.

13

Note: An instance of an object has a block of memory for that instance’s data. When you create an object,
that memory block gets allocated and when you delete the object that memory block gets

deallocated.

To get the current heading from the gyro, you simply call the getangle method of the gyro object. Calling
this method is really just calling a function that works on the data specific to this gyro instance.

float heading = robotHeadingGyro.getAngle();

This sets the variable heading to the current heading of the gyro on analog channel 1.

14

WPI Robotics Library Conventions
This section documents some conventions used throughout the library to standardize its use and make
things more understandable. Knowing these should make your programming job much easier.

Class, Method, and Variable Naming
Names follow these conventions:

Type of name Naming rules Examples

Class name Initial upper case letter then camel case Victor, SimpleRobot, PWM
(mixed upper/lower case) except acronyms
which are all upper case

Method name Initial lower case letter then camel case isAutonomous, getAngle
Member variable “m_" followed by the member variable m_deleteSpeedControllers,
name starting with a lower case letter then =~ ™_Sensitivity
camel case
Local variable Initial lower case targetAngle

Constructors with Slots and Channels
Most constructors for physical objects that connect to the cRIO take the port number in the constructor.
The conventions are:

* Specify an I/0 port with the slot number followed by the channel number. The slot number
identifies the cRIO chassis slot that the module is plugged into. An Analog module can be
connected to chassis slot 1 or 2. The channel number identifies which of the module’s /0 channels
the device is wired to.

* Since many robots can be built with only a single analog or digital module, there is a shorthand
way to specify a port. If the port is on the first (lowest numbered) module, the slot parameter can
be left out.

Examples are:

Jaguar (int channel) // channel with default slot (4)
Jaguar (int slot, int channel) // channel and slot

Gyro(int slot, int channel) // channel with explicit slot
Gyro(int channel) // channel with default slot (1)

Sharing inputs between objects
WPILib object constructors generally use port number(s) to select and reserve cRIO input and output
channels. e.g. when you instantiate an encoder object, it reserves a digital input channel.

15

Built-in Robot classes

There are several built-in robot classes to help you quickly create a robot program. Subclass the one that
best fits your requirements and preferences.

Table 1: Built-in robot base classes to create your own robot program.

SimpleRobot

IterativeRobot

RobotBase

This template is the easiest to use and is designed for writing a
straight-line autonomous routine without complex state machines.

Pros:

* There are only three places to put your code: the constructor
for initialization, the Autonomous method for autonomous
code and the OperatorControl method for teleop code.

* Sequential robot programs are trivial to write. Just code each
step one after another.

* No state machine is required for multi-step operations. The
program can simply do each step sequentially.

Cons:

* Switching between autonomous and operator control code
may require rebooting the controller if your program gets
stuck in a loop.

* The Autonomous method will not quit running until it exits, so
it will continue to run during the operator control period. You
don’t want that. So be sure to make your loops check if the field
state is still in the autonomous period.

This template gives additional flexibility in the code for responding to
various field state changes (autonomous, operator control, disabled) in
exchange for additional complexity in your program. IterativeRobot
repeatedly calls your methods depending on the current field state.
The intent is that each method will do some processing for that field
state and then return. That way, as soon as the field state changes,
IterativeRobot starts calling a different method.

Pros:

* You get fine-grain control of field state changes, especially if
you're practicing and retesting the same field state over and
over.

Cons:

* [t’s more difficult to write action sequences that unfold over
time, e.g. an autonomous sequence. That requires state
variables to remember what the robot was doing from one call
to the next.

The base class for the above classes. This provides all the basic
functions for field control, the user watchdog timer, and robot status.
Extend this class if you need more flexibility.

16

SimpleRobot class

The simpleRobot class is designed to be the base class for a robot program with straightforward

transitions from Autonomous to Operator Control periods. There are three methods to fill in to complete
a SimpleRobot program.

Table 2: SimpleRobot class methods that are called as the field state progresses through the match.

the Constructor
(method with the
same name as the
robot class)

autonomous ()

operatorControl ()

Put code in the constructor to initialize sensors, motors, pneumatics,
and your robot program variables. This code runs as soon as the
robot is turned on, before it is enabled, that is, before it can operate
motors and other actuators. When the constructor exits, the program
will wait until the robot is enabled.

Put code in the autonomous method to run during the autonomous
period of the match. When this method exits, the program will wait
until the start of the operator control period. This method had better
detect the end of the autonomous period since it won’t be
interrupted when it’s time for operator control. If this method has an
infinite loop, it won’t stop until the entire match ends.

Put code in the operatorControl method to run the robot during
the operator control part of the match. This method will be called
after the autonomous method has exited and the field has switched
to the operator control part of the match. If your program exits from
the operatorControl method, it will not resume until the robot is
reset.

IterativeRobot class
The 1terativeRobot class organizes your robot program (your subclass) into methods that it calls

according to the match state. For example, it calls your autonomousContinuous method repeatedly during
the autonomous period. When the playing field (or Driver Station setting) changes to operator control, it

calls the teleopinit method then starts calling the teleopContinuous method repeatedly.

When basing a robot program on the rterativeRobot base class, you implement these methods:

Table 3: IterativeRobot calls these methods of your robot program as the match proceeds:

robotInit()

disabledInit ()

autonomousInit ()

teleopInit ()

disabledPeriodic()

autonomousPeriodic () Called periodically during the autonomous part of

Called when the robot is first turned on. You put
initialization code here or in the constructor. This
method is only called once.

Called once each time the robot becomes disabled.

Called once when the match enters the autonomous
period from any other state.

Called once when the match enters the teleoperated
period from any other state.

Called periodically during the disabled part of the
match, using a periodic timer.

the match, using a periodic timer.

17

teleopPeriodic() Called periodically during the teleoperated part of
the match, using a periodic timer.

disabledContinuous () Called continually during the disabled part of the
match. When this method returns, it gets called
again if the match state hasn’t changed.

autonomousContinuous () Called continually during the autonomous part of
the match. When this method returns, it gets called
again if the match state hasn’t changed.

teleopContinuous () Called continually during the teleoperated part of
the match. When this method returns, it gets called
again if the match state hasn’t changed.

The three Init methods are called on transition into the relevant field state. The Continuous methods are
called repeatedly while in that state, after calling the appropriate Init method. The Periodic methods are
called periodically while in a given state. Call the 1terativeRobot class’s setPeriod method to set the
period interval. The periodic methods are intended for time-based algorithms like PID control. During
each match state, its periodic and continuous methods will both be called, at different rates.

RobotBase class

The rRobotBase class is the superclass of the simpleRobot and IterativeRobot classes. If you decide not
to build on simpleRobot Or IterativeRobot , then subclass RobotBase directly. RobotBase has all the
methods to determine the field state, set up the watchdog timer, handle communications, and do other
housekeeping work.

Create a subclass of RobotBase and implement at least the startCompetition method, much like the
SimpleRobot class does.

18

For example, the simpleRobot class definition looks approximately like this:

public class SimpleRobot extends RobotBase {
private boolean m_robotMainOverridden;
public SimpleRobot () {

super();
m_robotMainOverridden = true;

}

public void autonomous() { // supplied default autonomous ()
System.out.println("Provided autonomous() method running");

}

public void operatorControl() { // suppled default operatorControl()
System.out.println("Provided operatorControl() method running");

}

public void robotMain() { // supplied default robotMain()
System.out.println("Information: No user-supplied robotMain()");
m_robotMainOverridden = false;

}

public void startCompetition() {
if (!m _robotMainOverridden) {
// this is where the match sequencing happens

}
}

[t overrides the startCompetition method that controls the running of the other methods and it adds the
autonomous,operatorControl,ZnuirobotMainInethOdeThestartCompetitionInethodlooks
approximately like this:

public void startCompetition() {
robotMain();
if (!m _robotMainOverridden) {
while (true) {
// Wait for robot to be enabled
while (isDisabled()) {
Timer.delay(.01);

}
// Now enabled - check if we should run Autonomous code
if (isAutonomous()) {
autonomous () ;
while (isAutonomous() && !isDisabled()) {
Timer.delay(.01);
}
} else {
operatorControl(); // run the operator control method
while (isOperatorControl() && !isDisabled()) {
Timer.delay(.01);
}
}

}

It uses the isDisabled and isAutonomous methods of RobotBase to determine the field state, then calls
the correct methods as the match progresses.

Similarly the 1terativeRobot class calls a different set of methods as the match progresses.
19

MotorSafety and the Watchdog timer class

MotorSafety timers are allocated on each speed controller object and the RobotDrive class. You can
individually enable and set expiration times for each motor and for the entire robot drive implemented
with the RobotDrive object. Every time you send a value, even the same value as the previous value, the
motor safety timer is reset. If no values are sent for a period longer than the expiration time for that
device, that motor is disabled until a new value is sent. The RobotDrive class has the motor safety enabled
by default and individual motors do not. If you want to use the motor safety option for individual motors,
you must enable it on each one and set the expiration time. You can enable or disable motor safety for an
individual device by calling the setsafetyEnabled (enabled) method, where enabled is replaced with
either a true or false Boolean value.

The Watchdog timer class has been deprecated for 2011 but is still available. The watchdog timer is
turned off by default and must be enabled explicitly to make use of it. The Watchdog timer will stop the
robot’s motors and pneumatics if the program goes into an infinite loop or crashes. A watchdog object is
created inside the rRobotBase class (the base class for all robot programs). Your robot program is
responsible for “feeding” the watchdog periodically by calling the feed () method on the Watchdog. If you
don’t feed the Watchdog often enough, it will stop all of the robot’s motors and pneumatics.

The default expiration time for the Watchdog is 500ms (0.5 second). Programs can override the default
expiration time by calling the setExpiration (expiration-time-in-seconds) method on the Watchdog.

Using the Watchdog timer is recommended for safety, but it can be disabled. For example, during the
autonomous period of a match the robot needs to drive for drive for 2 seconds then make a turn. The
easiest way to do this is to start the robot driving, and then call wait to wait for 2 seconds. During the 2-
second wait, it can’t feed the Watchdog. In this case you could disable the Watchdog at the start of the
autonomous () method and re-enable it at the end. 4 better approach is to set a longer watchdog timeout
period so you still get most of the watchdog protection.

You can call getwatchdog () from any of the methods in a RobotBase subclass.

Waiting for 2 seconds has another problem: This robot program’s teleoperated code will start up to 2
seconds late if autonomous mode ends near the start of those 2 wait seconds since the teleoperated code
won’t start until the autonomous method returns.

20

Advanced Programming Topics

Concurrency
TBS

Using Subversion with NetBeans

Subversion is a free source code management tool that is designed to track changes to a project as it is
developed. You can save each revision of your code in a repository, go back to a previous revision, and
compare revisions to see what changed. You should install a Subversion client if:

* You need access to the WPI Robotics Library source code installed on a Subversion server.
* You have your own Subversion server for your team projects. This is especially useful if your team
has more than one programmer.

Getting the WPILib Source Code

The Java source code for WPILib is included with the NetBeans plugins (the Java update). Teams can
access the source code by opening the WPILib source code project here:
c:\Users\<username>\sunspotfrcsdk\WPILib].

This source code will always be updated to match the current installation of the plugins. The source code
is always rebuilt as part of a FRC Java project so any changes made to that directory will impact the files
downloaded to the cRIO. With that said, the recommended method of modifying the source code is to
make a copy of the new class and add it to your project. That way updates to the Java plugins won’t
overwrite your customizations. Even better is to write a subclass of a WPILib class rather than changing
WPILib.

Differences between C++ and Java

C++ and Java are very similar languages. In fact Java has its roots in C++. If you looked at a C++ or Java
program from a distance, it would be hard to tell them apart. You'll find that if you can write a WPILib
C++ program for your robot, then you can probably also write a Java program.

Language differences

There is a good detailed list of differences between the two languages on Wikipedia:
http://en.wikipedia.org/wiki/Comparison of Java and C++. Here’s a summary of the main differences that
affect WPILib robot programs.

e C++ memory is allocated and freed manually, that is the programmer is required to allocate
objects and delete them. In Java, you allocate objects the same way (via the new operator), but they
get freed automatically when there are no more references to them. This greatly simplifies
memory management for programmers.

* Java does not have pointers; only references to objects. All objects must be allocated with the new
operator and are always referenced using the dot (.) operator, for example gyro.getangle().In
C++ you have to manage the difference between pointers, references, and local instances of
objects.

* (C++ uses header files and a preprocessor for including declarations in parts of the program where
they are needed. In Java this happens automatically and with much less trouble.

e C++ supports multiple inheritance where a class can be derived from several other classes
combining the behavior of all of the base classes. In Java only single inheritance is supported, but it
has interfaces to get most of the benefits of multiple inheritance without the complications.

* Java programs will check for array subscripts out of bounds, uninitialized references to objects,
and other runtime errors that might occur a program. C++ will just crash if you make these goofs.

21

C++ programs will run the fastest since it compiles to machine code for the cRIO’s PowerPC
processor. The Java virtual machine interprets byte codes.

WPILib differences

We made every attempt to make the transition between C++ and Java as easy as possible in both
directions. All the classes and methods have the same names. There are some differences due to the
differences in the languages and language conventions:

Method name Methods are named with Methods are named with

convention an upper case first letter alower case first letter
and then camel case then camel case after
after that, for example, that, for example
GetDistance() . getDistance() .

Utility functions Call global utility Java has no functions
functions like outside of classes so for
delay (1.0) (to waitfor example you call
one second). Timer.delay (1.0).

Our version of Java

The Java virtual machine and implementation we are using is the Squawk platform based on the Java ME
(micro edition) standard. Java ME is simplified version of Java designed for the limitations of embedded
devices like the cRIO. As a result it doesn’t have classes such as GUI classes that aren’t useful in embedded
programs. If you’'ve done any Java programming in the past it was probably with the Java Standard
Edition (SE). Some of the differences between SE and ME are:

Dynamic class loading is not supported. No class loading or unloading at run time.

Reflection (a way of manipulating classes while the program is running) is not supported.

The Java compiler generates a series of byte codes for the virtual machine. Building a Java ME
program runs compiler then does a “pre-verification” step. Pre-verification speeds up program
loading process and keeps the Java virtual machine (JVM) smaller.

Finalization is not implemented, that is, the JVM will not automatically call £inalize () methods. If
you need to run cleanup code, you must explicitly call a cleanup method.

Java Native Interface (JNI) is not supported. JNI is a standard way means for Java programs to call
C programs. The JVM does support a similar mechanism called JNA.

Serialization and Remote Method Invocation (RMI) are not supported.

User interface libraries (Swing and AWT) are absent.

Threads are supported by thread groups are not.

Since Java ME is based on an earlier version of Java SE (1.3), it doesn’t include newer features such
as generics, annotations, enums, varargs, and autoboxing.

22

