Troubleshooting [image: image1.png]

Problem solving is a logical, systematic search for the cause. The purpose isn’t to just make the problem disappear, but to identify and solve the root cause so it will never happen again. Prevention of future recurrences can only be assured if we positively identify and confirm the cause.

The symptoms of a problem can have many possible causes in a complex system like a robot, and there may be multiple contributing interactions that create the problem.

Troubleshooting requires identification of the malfunction(s) or symptoms within a system. Then, experience is commonly used to generate possible causes of the symptoms. Determining which cause is most likely is often a process of elimination - eliminating potential causes of a problem. Finally, troubleshooting requires confirmation that the solution restores the product or process to its working state.

Correlation does not imply causality so beware of blaming coincidences. Critical thinking is very important rather than immediately blaming something you simply don’t understand. Failure after you’ve done something differently doesn't necessarily mean that the events are related.

Efficient methodical troubleshooting starts with a clear understanding of the expected behavior of the system and a clear understanding of all the symptoms being observed. From there the troubleshooter forms hypotheses on potential causes, and devises tests to eliminate each prospective cause.
Check for frequently encountered or easily tested conditions first, e.g., things plugged in backwards.

Rapidly isolate the problem by progressively dividing the system and eliminate large chunks of robot components as a cause.
Troubleshooting can take advantage of a systematic checklist, troubleshooting procedure, flowchart or table based on your robot design that is made before a problem occurs. Developing troubleshooting procedures in advance allows sufficient thought about the steps to take in troubleshooting and organizing the troubleshooting into the most efficient process.
General Technique (CSI)

1. 1st rule of troubleshooting: Do no harm! Making drastic and irreversible changes when you don’t really know what the problem is, just causes new headaches often leaving you off worse than before. Especially, aggravating when you discover the simple loose screw that solves it all.

2. Work to uncover the symptoms and causes, not further disguise them.

3. Use the scientific method. Collect facts, develop hypotheses, test hypotheses. Efficient, methodical investigation.

4. Clear your mind. Don’t disguise the problem by assigning blame prematurely.

5. Collect and preserve evidence (before fiddling with anything)

a. What was happening when the problem occurred?

b. State of the driver controls

c. State of the playing field

d. Status indicators

e. Visible signs from the robot/driver station

6. Required: a clear understanding of cross-dependencies among components and subsystems
7. Enlist sub-system experts – each specialist should assume the problem lies within their expertise and investigate accordingly.

8. Reproduce the problem via a specific sequence of steps, then simplify the steps to the minimum necessary to consistently cause the problem to occur. Many issues are intermittent, especially if you don’t yet understand what circumstances force the problem to occur. In these cases try to isolate the steps that increase the likelihood or frequency of the problem.

9. Categorize the problem – think how each sub-system could be a contributing factor, what was changed recently before the problem manifest itself?

10. Hypothetical causes – make sure each potential cause you come up with can be justified. Just because you don’t know what something does is no justification for blaming it as a cause. System experts should be assigning possible causes only by their system, not someone elses.

11. Isolate the variables of the problem by a logical process of elimination.

12. Research – do the symptoms match a known problem

13. Develop a series of hypotheses and test each one - start from the simplest and most probable explanation. Is the battery plugged in and charged should always be high on your list of probable causes to test.

14. Don’t assume – Test. A battery will work fine until it finally fails. Guess what you’ll be doing when you finally discover it has failed? Using the battery!

Beware of Bias in your data collection

Confirmation bias is a common human tendency to first form an opinion or theory, then while fixating on our theory look for and only pay attention to anecdotal information and "facts" that support our theory, while ignoring or dismissing contradictory evidence.
Instead, make a habit of skepticism, especially of your own gut feelings. Play devil's advocate with yourself. Entertain nagging doubts.
Get in the habit of collecting data, not to prove a point, not haphazardly or from rumor, but systematically. Capture the data from when it operates properly, not just from when it fails.

System of Systems

Things that don’t work well together and contribute jointly to a failure

· FMS

· Robot Control System

· Robot Electrical System

· Network Communication

· Mechanical System

· Pneumatic System

Field Management System (FMS)

FMS has these areas of influence:

1. LAN communication

2. Network monitoring/logging

3. Field mode identification

4. Robot disable/Estop

Control System

1. Evidence disappears as soon as you turn anything off or change anything

a. Status lights everywhere

b. Communications records, e.g., the wireless bridge records of dropped packets

2. Eliminate possible contributors to the problem and isolate by pulling breakers, disconnecting components, etc.

3. Once you’ve identified potential trouble spots you can

a. Test connections, examine wiring for wear or breaks

b. Swap in replacements for suspected components one at a time. Do not make more than one substitution or change at a time and don’t swap components willy-nilly without a working hypothesis.

4. Components

a. Classmate Driver Station

b. FMS LAN

c. Bridge

d. cRIO

e. Breakouts (analog, solenoid, digital)

f. Speed controllers, spikes, solenoids

5. Categories

a. Programming – race conditions

b. Software versions

c. Firmware versions

Network Communication

1. Categories

a. Stolen IP addresses (e.g., iTouch auto-connecting to the robot network)

2. Hardware issues

a. Broken Ethernet retaining clip (Classmate, cRIO, anywhere the cable gets repeatedly plugged/unplugged) – add strain relief to any tethering cables

b. Mechanical security button on bridge pushing itself

Mechanical System

1. Categories

a. Normal wear and tear

b. Part failure/break

c. Binding/alignment

Electrical System

1. Categories

2. Most common isolation is by pulling breakers one at a time, then when the problem disappears hold the suspect breaker and add back in the earlier ones pulled to be sure the problem is due to a single cause.

3. Friction power connectors (bridge, camera) can come loose under impact or excessive rattling.

4. Bent pin in the cRIO module slots due to sloppy module insertion.
5. Isolate both the cRIO chassis and the camera chassis from the robot frame
Pneumatic System

1. Categories

