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One of the more difficult programming problems to solve in FIRST 
robotics is accurate control of systems. For example in the 2006 Game 
(“Aim High”) robots used a low-resolution digital camera with a serial 
output to track a green light. A series of globally accessible variables 
allowed the robot program to access the results of that tracking while 
processing. Now here’s where control theory comes in, in order to target the 
goal with a shooter mechanism we need some way to get it there. Many 
people recommend PID and this paper goes over the basic math and 
principles behind using it. It’s meant to be a general overview to help you to 
develop your own PID control programming. PID is made up of three main 
components:  

 
P – Proportional control. The output varies based on how far you are 
from your target. 
 
I – Integral control. The output varies based on how long it’s taking 
you to get to your target. 
 
D – Derivative control. The output varies based on the change in the 
error. Greater change is greater response, good for dampening spikes 
and jumps. 

 
The simplest of the three is proportional. It has a varying output based 

on the error between current position and target position. It also has a “gain” 
value. This is essentially a sensitivity control; the higher this number is the 
more responsive the output is to the error. The formula for P is: 
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POUT = KP * KERR 
 

The formula for KERR is: 
KERR = Target Point – Current Point 

 

POUT is the result, KP is the gain and the KERR is the error. As you can 
see it’s simply a multiplication of the error multiplied by gain. The higher 
the gain, the more response you get per unit of error. It suffers from a 
problem called “Steady State Error” and makes it unsuitable for most 
applications by itself. An example of this is using P to turn to a certain gyro 
heading on a robot. As you approach the target heading, motor power output 
goes down and eventually there’s so little power, it stalls, and is stuck 
perpetually stalled short of its goal. It’s still trying to move, but there just 
isn’t enough power. Usually this is where Integral control is introduced to 
finish the job. 

 
Integral (I) Control is similar to P control; however instead of the 

current error, it uses the integrated error. That is the sum of the error every 
cycle around. The longer it takes you to reach your target, the higher the 
integrated error becomes and the higher the output. This is most useful in 
completing a P based control. Using the above example of a turn, when the 
power level output by P control became low enough to stall, the integrated 
error starts to build up and keep the robot turning, as it approaches the target 
the P error continues to drop, and generally the I output will cause an 
overshoot and then drive it back. The formula for I control is: 

 
IOUT = KI * IERR 

 
The formula for IERR is: 

IERR = Previous IERR + KERR 
 

By using both you will almost certainly reach your target, once your 
gains are properly “tuned” to the proper values. Tuning is a fairly simple 
procedure, but it takes time. First, set both your I and P gains to zero. Then 
increase P until the responsive is where you like it, and you’re getting a 
consistent steady state error. Then start increasing I slowly. Your goal is to 
have it drive smoothly to your target point. Most of the time the best you can 
get is for it to overshoot the target slightly and back towards it.  

 
Another problem is sometimes the optimal gain is not a clean integer 

number but a point between them. It’s well known however that the 



controller’s processor does not enjoy floating point math so much. There is a 
trick to this though. Since gains are constants they do not need to be a 
variable, simply a pre-processor directive. An example follows of a very 
basic P control function. 
 
#define KP 5 / 10 
 
unsigned char PCntrl(signed int target, signed int current) 
{ 
 signed int error = 0; 
 signed int p_out = 0; 
 
 error = target – current; 
 
 p_out = error * KP; 
 
 if(p_out > 127) 
  p_out = 127; 
 if(p_out < -127) 
  p_out = -127; 
 
 return (unsigned char)(p_out + 127); 
} 
 
This function is used as follows: 
 
 pwmXX = PCntrl(100,Get_Analog_Value(rc_ana_in01)); 
 
 This uses basic P control to drive a motor based on a potentiometer 
value connected to Analog Input 1, as it approaches a value of 100, it will 
slow down, and most likely stop shy of its target due to steady state error as 
described above. It also uses a trick to use a fractional gain. Pre-processor 
directives such as #define are essentially find and replace commands for the 
compiler. As such when the p_out line was processed, it was not read as 
shown, the compiler replaced KP with its defined meaning and processed 
this instead: 
   
  p_out = error * 5 / 10; 
 
 Now the error was multiplied by 5 and then divided over 10 giving a 
very close approximation of the error multiplied by a gain of 0.5, as close as 
possible without the use of floating point math and is more than adequate. 
This is considerably faster and easier than the use of floating point 
operations. 
 



 Another problem is integral windup. This is common when robots are 
disabled for a period while the PID loop is trying to maintain a position. If 
left along a integral error will build up rapidly and cause a rapid and 
unstable reaction when suddenly released by enabling. A check of the 
competition port disable status before increasing the integral error is always 
a good idea. Also, setting a maximum integral error is good, to prevent the 
device in question from “over-responding” to an error. 
 
 The if() block in the above example is used as a basic sanity check to 
prevent the outputs from exceeding the limits of the pwmXX variables and 
causing a wraparound condition which can produce random and erratic 
results. I used signed math because it’s neater than dealing with negative 
errors and all positive outputs, a simple typecast and addition of 127 to the 
number at the end makes it IFI compatible. 
 
 Now finally, the third musketeer, Derivative control, D, sometimes 
called Delta control because it’s actually driven by the change, or delta, of 
the KERR. As such it can be used to react to sudden changes in error, and is 
good for maintaining a certain position or velocity on a closed loop system. 
The formula for D is: 
 

DOUT = DERR * KD 
 

The formula for DERR is: 
DERR = KERR – Previous KERR 

 

 Full PID control is simply the combination of the results of all three 
formulas. Different combinations of the formulas are good for different 
situations. For example, PI is good at getting you to a spot quickly, but is not 
the most accurate; PD can reach a spot fairly quickly and hold it fairly well. 
PID can accurately maintain a position, but is not the fastest or gentlest.  
 
 A common application in the 2006 season for PID controls were 
targeting based on the vision system. The included CMUCamII could 
provide a numeric value indicating which pixel the green mass of the light 
was centered on. Using the center pixel as a target point you could compute 
an error and tune the gains to control a gimbal motor, or even a rate of turn 
for a robot base to point at the goal. An example of such follows: 



 
#define KP 15 / 10 
#define KI  5 / 10 
#define KD 10 / 10 
 
unsigned char camera_pan_track() 
{ 

signed int error; 
signed int delta_err; 
signed int p_out; 
signed int i_out; 
signed int d_out; 
signed int output; 
 
static signed int integral_err; 
static signed int prev_err; 
 
error = (int)T_Packet_Data.mx - PAN_TARGET_PIXEL_DEFAULT; 
delta_err = prev_err – error; 
integral_error += error; 
 
if(integral_err > 200) 
 integral_err = 200; 
if(integral_err < -200) 
 integral_err = -200; 

  
 p_out = error * KP; 
 i_out = integral_err * KI; 
 d_out = delta_err * KD; 
 
 output = p_out + i_out + d_out; 
 if(output > 127) 
  output = 127; 
 if(output < -127) 
  output = -127; 
 
 prev_err = error; 
  
 return (unsigned char)output + 127; 
} 
 

 This example uses PID to drive a motor to rotate the camera to track 
the light by panning only, this is not for servo’s, nor is it complete, it’s 
meant to illustrate the concept. It does not include countermeasures against 
Integral Windup beyond a simple sanity check on the size of integral error. 
Take note that the KP, KI and KD constants must be the last thing in the 
equation to ensure they are properly parsed through order of operations. 
 



 Possible applications for PID control are accurate position control, 
gyro based turns, velocity control, closed loop steering. With a small 
arrangement of sensors such as the camera, potentiometers, a gyro and 
encoders you can use PID and closed loop control for many aspects of your 
robots control such as: 
 

• Closed loop steering, use gyro or encoders to adjust power to motors 
to drive straighter 

• Closed loop turning, make precise quick turns using a gyroscope / 
angular rate sensor in autonomous. 

• Drive a certain distance in a straight line using encoders. 
• Maintain position by maintaining a certain encoder tick count, this 

causes the motors to fight back against being pushed with the precise 
power output required. 

• Driving a tracking/shooting gimbal using the camera in the 2006 
game. 

• Maintain rotational velocity of impeller or collector wheels for balls 
by adjusting speed based on a target number of encoder ticks over 
time. 

• Precision position of manipulators using encoders or potentiometers. 
 

There are many more applications, and I’m sure there’s one I can’t even 
think of. I hope this document was of use and help to many of you FRC 
programmers out there. 


